ترغب بنشر مسار تعليمي؟ اضغط هنا

New form of kernel in equation for Nakanishi function

93   0   0.0 ( 0 )
 نشر من قبل Vladimir Karmanov
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف V.A. Karmanov




اسأل ChatGPT حول البحث

The Bethe-Salpeter amplitude $Phi(k,p)$ is expressed, by means of the Nakanishi integral representation, via a smooth function $g(gamma,z)$. This function satisfies a canonical equation $g=Ng$. However, calculations of the kernel $N$ in this equation, presented previously, were restricted to one-boson exchange and, depending on method, dealt with complex multivalued functions. Although these difficulties are surmountable, but in practice, they complicate finding the unambiguous result. In the present work, an unambiguous expression for the kernel $N$ in terms of real functions is derived. For the one-boson scalar exchange, the explicit formula for $N$ is found. With this equation and kernel, the binding energies, calculated previously, are reproduced. Their finding, as well as calculation of the Bethe-Salpeter amplitude in the Minkowski space, become not more difficult than in the Euclidean one. The method can be generalized to any kernel given by irreducible Feynman graph. This generalization is illustrated by example of the cross-ladder kernel.

قيم البحث

اقرأ أيضاً

The bound state Bethe-Salpeter amplitude was expressed by Nakanishi in terms of a smooth weight function g. By using the generalized Stieltjes transform, we derive an integral equation for the Nakanishi function g for a bound state case. It has the s tandard form g= Vg, where V is a two-dimensional integral operator. The prescription for obtaining the kernel V starting with the kernel K of the Bethe-Salpeter equation is given.
The bound state Bethe-Salpeter amplitude was expressed by Nakanishi using a two-dimensional integral representation, in terms of a smooth weight function $g$, which carries the detailed dynamical information. A similar, but one-dimensional, integral representation can be obtained for the Light-Front wave function in terms of the same weight function $g$. By using the generalized Stieltjes transform, we first obtain $g$ in terms of the Light-Front wave function in the complex plane of its arguments. Next, a new integral equation for the Nakanishi weight function $g$ is derived for a bound state case. It has the standard form $g= N g$, where $N$ is a two-dimensional integral operator. We give the prescription for obtaining the kernel $ N$ starting with the kernel $K$ of the Bethe-Salpeter equation. The derivation is valid for any kernel given by an irreducible Feynman amplitude.
We present a new method for solving the two-body Bethe-Salpeter equation in Minkowski space. It is based on the Nakanishi integral representation of the Bethe-Salpeter amplitude and on subsequent projection of the equation on the light-front plane. T he method is valid for any kernel given by the irreducible Feynman graphs and for systems of spinless particles or fermions. The Bethe-Salpeter amplitudes in Minkowski space are obtained. The electromagnetic form factors are computed and compared to the Euclidean results.
The data on the proton form factors in the time-like region from the BaBar, BESIII and CMD-3 Collaborations are examined to have coherent pieces of information on the proton structure. Oscillations in the annihilation cross section, previously observ ed, are determined with better precision. The moduli of the individual form factors, determined for the first time, their ratio and the angular asymmetry of the annihilation reaction $e^+e^-tobar p p$ are discussed. Fiits of the available data on the cross section, the effective form factor, and the form factor ratio, allow to propose a description of the electric and magnetic time-like form factors from the threshold up to the highest momenta.
We present a calculation of the electromagnetic form factors of the $rho^+$ meson. Our formalism is based on the point-form of relativistic quantum mechanics. Electron-$rho$-meson scattering is formulated as a coupled-channel problem for a Bakamjian- Thomas mass operator, such that the dynamics of the exchanged photon is taken explicitly into account. The $rho$-meson current is extracted from on-shell matrix elements of the optical potential of the scattering process. As a consequence of the violation of cluster separability in the Bakamjian-Thomas framework, our current includes additional, unphysical contributions, which can be separated from the physical ones uniquely. Our results for the form factors are in good agreement with other approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا