ﻻ يوجد ملخص باللغة العربية
The bound state Bethe-Salpeter amplitude was expressed by Nakanishi using a two-dimensional integral representation, in terms of a smooth weight function $g$, which carries the detailed dynamical information. A similar, but one-dimensional, integral representation can be obtained for the Light-Front wave function in terms of the same weight function $g$. By using the generalized Stieltjes transform, we first obtain $g$ in terms of the Light-Front wave function in the complex plane of its arguments. Next, a new integral equation for the Nakanishi weight function $g$ is derived for a bound state case. It has the standard form $g= N g$, where $N$ is a two-dimensional integral operator. We give the prescription for obtaining the kernel $ N$ starting with the kernel $K$ of the Bethe-Salpeter equation. The derivation is valid for any kernel given by an irreducible Feynman amplitude.
The bound state Bethe-Salpeter amplitude was expressed by Nakanishi in terms of a smooth weight function g. By using the generalized Stieltjes transform, we derive an integral equation for the Nakanishi function g for a bound state case. It has the s
The Bethe-Salpeter amplitude $Phi(k,p)$ is expressed, by means of the Nakanishi integral representation, via a smooth function $g(gamma,z)$. This function satisfies a canonical equation $g=Ng$. However, calculations of the kernel $N$ in this equation
We present a method to directly solving the Bethe-Salpeter equation in Minkowski space, both for bound and scattering states. It is based on a proper treatment of the singularities which appear in the kernel, propagators and Bethe-Salpeter amplitude
In this paper, we study the finite temperature-dependent Schr{o}dinger equation by using the Nikiforov-Uvarov method. We consider the sum of the Cornell, inverse quadratic, and harmonic-type potential as the potential part of the radial Schr{o}dinger
We present a derivation of the Gribov equation for the gluon/photon Greens function D(q). Our derivation is based on the second derivative of the gauge-invariant quantity Tr ln D(q), which we interpret as the gauge-boson `self-loop. By considering th