ﻻ يوجد ملخص باللغة العربية
Brain age estimation based on magnetic resonance imaging (MRI) is an active research area in early diagnosis of some neurodegenerative diseases (e.g. Alzheimer, Parkinson, Huntington, etc.) for elderly people or brain underdevelopment for the young group. Deep learning methods have achieved the state-of-the-art performance in many medical image analysis tasks, including brain age estimation. However, the performance and generalisability of the deep learning model are highly dependent on the quantity and quality of the training data set. Both collecting and annotating brain MRI data are extremely time-consuming. In this paper, to overcome the data scarcity problem, we propose a generative adversarial network (GAN) based image synthesis method. Different from the existing GAN-based methods, we integrate a task-guided branch (a regression model for age estimation) to the end of the generator in GAN. By adding a task-guided loss to the conventional GAN loss, the learned low-dimensional latent space and the synthesised images are more task-specific. It helps to boost the performance of the down-stream task by combining the synthesised images and real images for model training. The proposed method was evaluated on a public brain MRI data set for age estimation. Our proposed method outperformed (statistically significant) a deep convolutional neural network based regression model and the GAN-based image synthesis method without the task-guided branch. More importantly, it enables the identification of age-related brain regions in the image space. The code is available on GitHub (https://github.com/ruizhe-l/tgb-gan).
As deep learning is showing unprecedented success in medical image analysis tasks, the lack of sufficient medical data is emerging as a critical problem. While recent attempts to solve the limited data problem using Generative Adversarial Networks (G
Chronological age of healthy people is able to be predicted accurately using deep neural networks from neuroimaging data, and the predicted brain age could serve as a biomarker for detecting aging-related diseases. In this paper, a novel 3D convoluti
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing. Without a sufficient number of training samples, deep learning based models are very likely to suffer from over-fitting problem. The co
Magnetic resonance imaging (MRI) is one of the best medical imaging modalities as it offers excellent spatial resolution and soft-tissue contrast. But, the usage of MRI is limited by its slow acquisition time, which makes it expensive and causes pati
Magnetic resonance imaging (MRI) is an important medical imaging modality, but its acquisition speed is quite slow due to the physiological limitations. Recently, super-resolution methods have shown excellent performance in accelerating MRI. In some