ﻻ يوجد ملخص باللغة العربية
Magnetic resonance imaging (MRI) is an important medical imaging modality, but its acquisition speed is quite slow due to the physiological limitations. Recently, super-resolution methods have shown excellent performance in accelerating MRI. In some circumstances, it is difficult to obtain high-resolution images even with prolonged scan time. Therefore, we proposed a novel super-resolution method that uses a generative adversarial network (GAN) with cyclic loss and attention mechanism to generate high-resolution MR images from low-resolution MR images by a factor of 2. We implemented our model on pelvic images from healthy subjects as training and validation data, while those data from patients were used for testing. The MR dataset was obtained using different imaging sequences, including T2, T2W SPAIR, and mDIXON-W. Four methods, i.e., BICUBIC, SRCNN, SRGAN, and EDSR were used for comparison. Structural similarity, peak signal to noise ratio, root mean square error, and variance inflation factor were used as calculation indicators to evaluate the performances of the proposed method. Various experimental results showed that our method can better restore the details of the high-resolution MR image as compared to the other methods. In addition, the reconstructed high-resolution MR image can provide better lesion textures in the tumor patients, which is promising to be used in clinical diagnosis.
Compressive sensing magnetic resonance imaging (CS-MRI) accelerates the acquisition of MR images by breaking the Nyquist sampling limit. In this work, a novel generative adversarial network (GAN) based framework for CS-MRI reconstruction is proposed.
Compressed sensing (CS) leverages the sparsity prior to provide the foundation for fast magnetic resonance imaging (fastMRI). However, iterative solvers for ill-posed problems hinder their adaption to time-critical applications. Moreover, such a prio
Magnetic resonance imaging (MRI) is one of the best medical imaging modalities as it offers excellent spatial resolution and soft-tissue contrast. But, the usage of MRI is limited by its slow acquisition time, which makes it expensive and causes pati
Acquiring High Resolution (HR) Magnetic Resonance (MR) images requires the patient to remain still for long periods of time, which causes patient discomfort and increases the probability of motion induced image artifacts. A possible solution is to ac
Deep learning based generative adversarial networks (GAN) can effectively perform image reconstruction with under-sampled MR data. In general, a large number of training samples are required to improve the reconstruction performance of a certain mode