ﻻ يوجد ملخص باللغة العربية
Developing quantum computers for real-world applications requires understanding theoretical sources of quantum advantage and applying those insights to design more powerful machines. Toward that end, we introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems. By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis (CCPHASE$(theta)$). We estimate the process fidelity for this scheme via Cycle Benchmarking of $mathcal{F}=87.1pm0.8%$, higher than reference two-qubit gate decompositions. CCPHASE$(theta)$ is anticipated to have broad experimental implications, and we report a blueprint demonstration for solving a class of binary constraint satisfaction problems whose construction is consistent with a path to quantum advantage.
Among the many proposals for the realization of a quantum computer, holonomic quantum computation (HQC) is distinguished from the rest in that it is geometrical in nature and thus expected to be robust against decoherence. Here we analyze the realiza
Cavity-mediated two-qubit gates, for example between solid-state spins, are attractive for quantum network applications. We propose three schemes to implement a controlled phase-flip gate mediated by a cavity. The main advantage of all these schemes
We generalize quantum circuits for the Toffoli gate presented by Selinger and Jones for functionally controlled NOT gates, i.e., $X$ gates controlled by arbitrary $n$-variable Boolean functions. Our constructions target the gate set consisting of Cli
Research on indefinite causal structures is a rapidly evolving field that has a potential not only to make a radical revision of the classical understanding of space-time but also to achieve enhanced functionalities of quantum information processing.
To realize fault-tolerant quantum computing, it is necessary to store quantum information in logical qubits with error correction functions, realized by distributing a logical state among multiple physical qubits or by encoding it in the Hilbert spac