ﻻ يوجد ملخص باللغة العربية
Recently, the modular linear differential equation (MLDE) for level-two congruence subgroups $Gamma_theta, Gamma^{0}(2)$ and $Gamma_0(2)$ of $text{SL}_2(mathbb{Z})$ was developed and used to classify the fermionic rational conformal field theories (RCFT). Two character solutions of the second-order fermionic MLDE without poles were found and their corresponding CFTs are identified. Here we extend this analysis to explore the landscape of three character fermionic RCFTs obtained from the third-order fermionic MLDE without poles. Especially, we focus on a class of the fermionic RCFTs whose Neveu-Schwarz sector vacuum character has no free-fermion currents and Ramond sector saturates the bound $h^{text{R}} ge frac{c}{24}$, which is the unitarity bound for the supersymmetric case. Most of the solutions can be mapped to characters of the fermionized WZW models. We find the pairs of fermionic CFTs whose characters can be combined to produce $K(tau)$, the character of the $c=12$ fermionic CFT for $text{Co}_0$ sporadic group.
Genus two partition functions of 2d chiral conformal field theories are given by Siegel modular forms. We compute their conformal blocks and use them to perform the conformal bootstrap. The advantage of this approach is that it imposes crossing symme
We construct a map between a class of codes over $F_4$ and a family of non-rational Narain CFTs. This construction is complementary to a recently introduced relation between quantum stabilizer codes and a class of rational Narain theories. From the m
We consider the hexagonal Wilson loop dual to the six-point MHV amplitude in planar N=4 super Yang-Mills theory. We apply constraints from the operator product expansion in the near-collinear limit to the symbol of the remainder function at three loo
We use modular invariance to derive constraints on the spectrum of warped conformal field theories (WCFTs) --- nonrelativistic quantum field theories described by a chiral Virasoro and $U(1)$ Kac-Moody algebra. We focus on holographic WCFTs and inter
We define Modular Linear Differential Equations (MLDE) for the level-two congruence subgroups $Gamma_vartheta$, $Gamma^0(2)$ and $Gamma_0(2)$ of $text{SL}_2(mathbb Z)$. Each subgroup corresponds to one of the spin structures on the torus. The pole st