ترغب بنشر مسار تعليمي؟ اضغط هنا

Bootstrapping Chiral CFTs at Genus Two

136   0   0.0 ( 0 )
 نشر من قبل Ida G. Zadeh
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Genus two partition functions of 2d chiral conformal field theories are given by Siegel modular forms. We compute their conformal blocks and use them to perform the conformal bootstrap. The advantage of this approach is that it imposes crossing symmetry of an infinite family of four point functions and also modular invariance at the same time. Since for a fixed central charge the ring of Siegel modular forms is finite dimensional, we can perform this analytically. In this way we derive bounds on three point functions and on the spectrum of such theories.

قيم البحث

اقرأ أيضاً

Recently, the modular linear differential equation (MLDE) for level-two congruence subgroups $Gamma_theta, Gamma^{0}(2)$ and $Gamma_0(2)$ of $text{SL}_2(mathbb{Z})$ was developed and used to classify the fermionic rational conformal field theories (R CFT). Two character solutions of the second-order fermionic MLDE without poles were found and their corresponding CFTs are identified. Here we extend this analysis to explore the landscape of three character fermionic RCFTs obtained from the third-order fermionic MLDE without poles. Especially, we focus on a class of the fermionic RCFTs whose Neveu-Schwarz sector vacuum character has no free-fermion currents and Ramond sector saturates the bound $h^{text{R}} ge frac{c}{24}$, which is the unitarity bound for the supersymmetric case. Most of the solutions can be mapped to characters of the fermionized WZW models. We find the pairs of fermionic CFTs whose characters can be combined to produce $K(tau)$, the character of the $c=12$ fermionic CFT for $text{Co}_0$ sporadic group.
We compute genus two partition functions in two dimensional conformal field theories at large central charge, focusing on surfaces that give the third Renyi entropy of two intervals. We compute this for generalized free theories and for symmetric orb ifolds, and compare it to the result in pure gravity. We find a new phase transition if the theory contains a light operator of dimension $Deltaleq0.19$. This means in particular that unlike the second Renyi entropy, the third one is no longer universal.
We study the Virasoro conformal block decomposition of the genus two partition function of a two-dimensional CFT by expanding around a Z3-invariant Riemann surface that is a three-fold cover of the Riemann sphere branched at four points, and explore constraints from genus two modular invariance and unitarity. In particular, we find critical surfaces that constrain the structure constants of a CFT beyond what is accessible via the crossing equation on the sphere.
113 - Luis Apolo , Wei Song 2018
We use modular invariance to derive constraints on the spectrum of warped conformal field theories (WCFTs) --- nonrelativistic quantum field theories described by a chiral Virasoro and $U(1)$ Kac-Moody algebra. We focus on holographic WCFTs and inter pret our results in the simplest holographic set up: three dimensional gravity with Compere-Song-Strominger boundary conditions. Holographic WCFTs feature a negative $U(1)$ level that is responsible for negative norm descendant states. Despite the violation of unitarity we show that the modular bootstrap is still viable provided the (Virasoro-Kac-Moody) primaries carry positive norm. In particular, we show that holographic WCFTs must feature either primary states with negative norm or states with imaginary $U(1)$ charge, the latter of which have a natural holographic interpretation. For large central charge and arbitrary level, we show that the first excited primary state in any WCFT satisfies the Hellerman bound. Moreover, when the level is positive we point out that known bounds for CFTs with internal $U(1)$ symmetries readily apply to unitary WCFTs.
We estimate thermal one-point functions in the 3d Ising CFT using the operator product expansion (OPE) and the Kubo-Martin-Schwinger (KMS) condition. Several operator dimensions and OPE coefficients of the theory are known from the numerical bootstra p for flat-space four-point functions. Taking this data as input, we use a thermal Lorentzian inversion formula to compute thermal one-point coefficients of the first few Regge trajectories in terms of a small number of unknown parameters. We approximately determine the unknown parameters by imposing the KMS condition on the two-point functions $langle sigmasigma rangle$ and $langle epsilonepsilon rangle$. As a result, we estimate the one-point functions of the lowest-dimension $mathbb Z_2$-even scalar $epsilon$ and the stress-energy tensor $T_{mu u}$. Our result for $langle sigmasigma rangle$ at finite-temperature agrees with Monte-Carlo simulations within a few percent, inside the radius of convergence of the OPE.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا