ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-unitary multiorbital superconductivity from competing interactions in Dirac materials

52   0   0.0 ( 0 )
 نشر من قبل Tobias M. R. Wolf
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Unconventional superconductors represent one of the most intriguing quantum states of matter. In particular, multiorbital systems have the potential to host exotic non-unitary superconducting states. While the microscopic origin of non-unitarity is not yet fully solved, competing interactions are suggested to play a crucial role in stabilizing such states. The interplay between charge order and superconductivity has been a recurring theme in unconventionally superconducting systems, ranging from cuprate-based superconductors to dichalcogenide systems and even to twisted van der Waals materials. Here, we demonstrate that the existence of competing interactions gives rise to a non-unitary superconducting state. We show that the non-unitarity stems from a competing charge-ordered state whose interplay with superconductivity promotes a non-trivial multiorbital order. We establish this mechanism both from a Ginzburg-Landau perspective, and also from a fully microscopic selfconsistent solution of a multiorbital Dirac material. Our results put forward competing interactions as a powerful mechanism for driving non-unitary multiorbital superconductivity.

قيم البحث

اقرأ أيضاً

The interaction-induced orbital magnetic response of a nanoscale ring is evaluated for a diffusive system which is a superconductor in the bulk. The interplay of the renormalized Coulomb and Fr{o}hlich interactions is crucial. The magnetic susceptibi lity which results from the fluctuations of the uniform superconducting order parameter is diamagnetic (paramagnetic) when the renormalized combined interaction is attractive (repulsive). Above the transition temperature of the bulk the total magnetic susceptibility has contributions from many wave-vector- and (Matsubara) frequency-dependent order parameter fluctuations. Each of these contributions results from a different renormalization of the relevant coupling energy, when one integrates out the fermionic degrees of freedom. The total diamagnetic response of the large superconductor may become paramagnetic when the systems size decreases.
214 - G. Tkachov 2016
Non-centrosymmetric superconductors exhibit the magnetoelectric effect which manifests itself in the appearance of the magnetic spin polarization in response to a dissipationless electric current (supercurrent). While much attention has been dedicate d to the thermodynamic version of this phenomenon (Edelstein effect), non-equilibrium transport magnetoelectric effects have not been explored yet. We propose the magnetoelectric Andreev effect (MAE) which consists in the generation of spin-polarized triplet Andreev conductance by an electric supercurrent. The MAE stems from the spin polarization of the Cooper-pair condensate due to a supercurrent-induced non-unitary triplet pairing. We propose the realization of such non-unitary pairing and MAE in superconducting proximity structures based on two-dimensional helical metals -- strongly spin-orbit-coupled electronic systems with the Dirac spectrum such as the topological surface states. Our results uncover an unexplored route towards electrically controlled superconducting spintronics and are a smoking gun for induced unconventional superconductivity in spin-orbit-coupled materials.
We introduce a variational state for one-dimensional two-orbital Hubbard models that intuitively explains the recent computational discovery of pairing in these systems when hole doped. Our Ansatz is an optimized linear superposition of Affleck-Kenne dy-Lieb-Tasaki valence bond states, rendering the combination a valence bond liquid dubbed Orbital Resonant Valence Bond. We show that the undoped (one electron/orbital) quantum state of two sites coupled into a global spin singlet is exactly written employing only spin-1/2 singlets linking orbitals at nearest-neighbor sites. Generalizing to longer chains defines our variational state visualized geometrically expressing our chain as a two-leg ladder, with one orbital per leg. As in Andersons resonating valence-bond state, our undoped variational state contains preformed singlet pairs that via doping become mobile leading to superconductivity. Doped real materials with one-dimensional substructures, two near-degenerate orbitals, and intermediate Hubbard U/W strengths -- W the carriers bandwidth -- could realize spin-singlet pairing if on-site anisotropies are small. If these anisotropies are robust, spin-triplet pairing emerges.
Actinide materials play a special role in condensed matter physics, spanning behaviours of itinerant d-electron and localized 4f-electron materials. An intermediate state, found notably in Pu-based materials whose 5f electrons are neither fully local ized nor itinerant, is particularly challenging to understand. Superconductivity appearing in some actinide materials provides clues to the nature of the 5f electrons. PuCoGa5, the first Pu-based superconductor, is superconducting at Tc=18.5 K. This relatively high Tc is unprecedented in any other actinide system but is typical of itinerant electron compounds in which superconductivity is mediated by phonons. Recent studies of PuCoGa5 show that its superconductivity is not phonon-mediated; rather, these experiments are consistent with superconductivity produced by antiferromagnetic fluctuations of nearly localized 5f electrons. Similarities of PuCoGa5 with the superconducting and normal states of isostructural 4f analogues CeMIn5 (M=Co, Rh, Ir) and high-Tc cuprates enable new perspectives on the 5f electrons of Pu.
One of the most promising approaches of generating spin- and energy-entangled electron pairs is splitting a Cooper pair into the metal through spatially separated terminals. Utilizing hybrid systems with the energy-dependent barriers at the supercond uctor-normal metal interfaces, one can achieve practically 100% efficiency outcome of entangled electrons. We investigate minimalistic one-dimensional model comprising a superconductor and two metallic leads and derive an expression for an electron-to-hole transmission probability as a measure of splitting efficiency. We find the conditions for achieving 100% efficiency and present analytical results for the differential conductance and differential noise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا