ترغب بنشر مسار تعليمي؟ اضغط هنا

Indistinguishable single photons from spatially-ordered array of highly efficient and pure mesa-top single quantum dots: A step closer to on-chip quantum optical circuits

68   0   0.0 ( 0 )
 نشر من قبل Swarnabha Chattaraj
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The first two decades of the 21st century have witnessed remarkable progress in harnessing the power of quantum mechanics, on-chip, enabled by the development in epitaxial semiconductor nanoscience with proof-of-principle demonstrations -- many tour-de force -- of quantum functionalities such as entanglement and teleportation amongst photon and matter qubits ---quintessential quantum phenomena that underpin the development of quantum technologies. A basic hindrance to such development however has been the absence of a platform of on-demand single photon sources (SPSs) with adequate spectral characteristics and arranged in spatially regular arrays necessary for their incorporation in surrounding light manipulation units to enable quantum networks. Here we report on the first spatially-ordered, scalable platform of deterministic, bright, spectrally highly uniform, pure, and indistinguishable SPSs. At 19.5K, and without Purcell enhancement, these SPSs exhibit emission purity ~99.2% and two-photon interference (TPI) indistinguishability ~57%. Oscillation behavior of the photon emission indicates that the photons originate from a coherent superposition of two excitonic states, revealing effectively a three-level electronic structure which can be exploited as potential two-frequency qubit generating energy entangled photons for teleportation. Time-dependent two photon interference (Hong-Ou Mandel interferometry) coincidence counts g(2)({tau}) near {tau}=0 show effectively zero count which, analyzed using the three-level model, reveals a highly encouraging dephasing time of ~0.58ns at ~20K. Such SPS arrays in a planarized structure open the pathway to creating interconnected quantum networks for application in communication, sensing, computing and more.



قيم البحث

اقرأ أيضاً

Semiconductor quantum dots are converging towards the demanding requirements of photonic quantum technologies. Among different systems, quantum dots with dimensions exceeding the free-exciton Bohr radius are appealing because of their high oscillator strengths. While this property has received much attention in the context of cavity quantum electrodynamics, little is known about the degree of indistinguishability of single photons consecutively emitted by such dots and on the proper excitation schemes to achieve high indistinguishability. A prominent example is represented by GaAs quantum dots obtained by local droplet etching, which recently outperformed other systems as triggered sources of entangled photon pairs. On these dots, we compare different single-photon excitation mechanisms, and we find (i) a phonon bottleneck and poor indistinguishability for conventional excitation via excited states and (ii) photon indistinguishablilities above 90% for both strictly resonant and for incoherent acoustic- and optical-phonon-assisted excitation. Among the excitation schemes, optical phonon-assisted excitation enables straightforward laser rejection without a compromise on the source brightness together with a high photon indistinguishability.
Single photons coupled to atomic systems have shown to be a promising platform for developing quantum technologies. Yet a bright on-demand, highly pure and highly indistinguishable single-photon source compatible with atomic platforms is lacking. In this work, we demonstrate such a source based on a strongly interacting Rydberg system. The large optical nonlinearities in a blockaded Rydberg ensemble convert coherent light into a single-collective excitation that can be coherently retrieved as a quantum field. We observe a single-transverse-mode efficiency up to 0.18(2), $g^{(2)}=2.0(1.5)times10^{-4}$, and indistinguishability of 0.982(7), making this system promising for scalable quantum information applications. Accounting for losses, we infer a generation probability up to 0.40(4). Furthermore, we investigate the effects of contaminant Rydberg excitations on the source efficiency. Finally, we introduce metrics to benchmark the performance of on-demand single-photon sources.
The development of scalable sources of non-classical light is fundamental to unlock the technological potential of quantum photonicscite{Kimble:Nat2008}. Among the systems under investigation, semiconductor quantum dots are currently emerging as near -optimal sources of indistinguishable single photons. However, their performances as sources of entangled-photon pairs are in comparison still modest. Experiments on conventional Stranski-Krastanow InGaAs quantum dots have reported non-optimal levels of entanglement and indistinguishability of the emitted photons. For applications such as entanglement teleportation and quantum repeaters, both criteria have to be met simultaneously. In this work, we show that this is possible focusing on a system that has received limited attention so far: GaAs quantum dots grown via droplet etching. Using a two-photon resonant excitation scheme, we demonstrate that these quantum dots can emit triggered polarization-entangled photons with high purity (g^(2)(0)=0.002 +/-0.002), high indistinguishability (0.93 +/-0.07) and high entanglement fidelity (0.94 +/-0.01). Such unprecedented degree of entanglement, which in contrast to InGaAs can theoretically reach near-unity values, allows Bells inequality (2.64 +/-0.01) to be violated without the aid of temporal or spectral filtering. Our results show that if quantum-dot entanglement resources are to be used for future quantum technologies, GaAs might be the system of choice.
97 - C. Nawrath , F. Olbrich , M. Paul 2019
In the present work, the effect of resonant pumping schemes in improving the photon coherence is investigated on InAs/InGaAs/GaAs quantum dots emitting in the telecom C-band. The linewidths of transitions of multiple exemplary quantum dots are determ ined under above-band pumping and resonance fluorescence via Fourier-transform spectroscopy and resonance scans, respectively. The average linewidth is reduced from $9.74,mathrm{GHz}$ in above-band excitation to $3.50,mathrm{GHz}$ in resonance fluorescence underlining its superior coherence properties. Furthermore, the feasibility of coherent state preparation with a fidelity of $49.2,%$ is demonstrated, constituting a step towards on-demand generation of coherent, single C-band photons from quantum dots. Finally, two-photon excitation of the biexciton is investigated as a resonant pumping scheme. A deconvoluted single-photon purity value of $g^{(2)}_{mathrm{HBT}}(0)=0.072pm 0.104$ and a degree of indistinguishability of $V_{mathrm{HOM}}=0.894pm0.109$ are determined for the biexciton transition. This represents an important step towards fulfilling the prerequisites for quantum communication applications like quantum repeater schemes at telecom wavelength.
In this letter, we present a detailed, all optical study of the influence of different excitation schemes on the indistinguishability of single photons from a single InAs quantum dot. For this study, we measure the Hong-Ou-Mandel interference of cons ecutive photons from the spontaneous emission of an InAs quantum dot state under various excitation schemes and different excitation conditions and give a comparison.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا