ﻻ يوجد ملخص باللغة العربية
The development of scalable sources of non-classical light is fundamental to unlock the technological potential of quantum photonicscite{Kimble:Nat2008}. Among the systems under investigation, semiconductor quantum dots are currently emerging as near-optimal sources of indistinguishable single photons. However, their performances as sources of entangled-photon pairs are in comparison still modest. Experiments on conventional Stranski-Krastanow InGaAs quantum dots have reported non-optimal levels of entanglement and indistinguishability of the emitted photons. For applications such as entanglement teleportation and quantum repeaters, both criteria have to be met simultaneously. In this work, we show that this is possible focusing on a system that has received limited attention so far: GaAs quantum dots grown via droplet etching. Using a two-photon resonant excitation scheme, we demonstrate that these quantum dots can emit triggered polarization-entangled photons with high purity (g^(2)(0)=0.002 +/-0.002), high indistinguishability (0.93 +/-0.07) and high entanglement fidelity (0.94 +/-0.01). Such unprecedented degree of entanglement, which in contrast to InGaAs can theoretically reach near-unity values, allows Bells inequality (2.64 +/-0.01) to be violated without the aid of temporal or spectral filtering. Our results show that if quantum-dot entanglement resources are to be used for future quantum technologies, GaAs might be the system of choice.
Semiconductor quantum dots are converging towards the demanding requirements of photonic quantum technologies. Among different systems, quantum dots with dimensions exceeding the free-exciton Bohr radius are appealing because of their high oscillator
An ideal source of entangled photon pairs combines the perfect symmetry of an atom with the convenient electrical trigger of light sources based on semiconductor quantum dots. We create a naturally symmetric quantum dot cascade that emits highly enta
State-of-the-art quantum key distribution systems are based on the BB84 protocol and single photons generated by lasers. These implementations suffer from range limitations and security loopholes, which require expensive adaptation. The use of polari
In this letter, we present a detailed, all optical study of the influence of different excitation schemes on the indistinguishability of single photons from a single InAs quantum dot. For this study, we measure the Hong-Ou-Mandel interference of cons
The generation and long-haul transmission of highly entangled photon pairs is a cornerstone of emerging photonic quantum technologies, with key applications such as quantum key distribution and distributed quantum computing. However, a natural limit