ﻻ يوجد ملخص باللغة العربية
A non-Hermitian system is characterized by the violation of energy conservation. As a result of unbalanced gain or loss in the forward and backward directions due to non-reciprocal couplings, the eigenmodes of such systems exhibit extreme localization, also known as non-Hermitian skin effect (NHSE). This work explores unconventional scenarios where the interplay of multiple asymmetric couplings can cause the NHSE to vanish, with the admittance spectra taking identical dispersion under open boundary conditions (OBC) and periodic boundary conditions (PBC). This is unlike known non-Hermitian models where the NHSE vanishes only when the non-Hermiticity is turned off. We derive general conditions for the NHSE, with the overall eigenmode localization determined by the geometric mean of the cumulative contributions of all asymmetric coupling segments. In the limit of large unit cells, our results provide a route towards the NHSE caused by asymmetric hopping textures, rather than single asymmetric hoppings alone. Furthermore, our generalized model can be transformed into a square-root lattice simply by tuning the coupling capacitors, where the topological edge states occur at a non-zero admittance, in contrast to the zero-admittance states of conventional topological insulators. We provide explicit electrical circuit setups for realizing our observations, which also extend to other established platforms such as photonics, mechanics, optics and quantum circuits.
Knots are intricate structures that cannot be unambiguously distinguished with any single topological invariant. Momentum space knots, in particular, have been elusive due to their requisite finely tuned long-ranged hoppings. Even if constructed, pro
The study of the laws of nature has traditionally been pursued in the limit of isolated systems, where energy is conserved. This is not always a valid approximation, however, as the inclusion of features like gain and loss, or periodic driving, quali
Higher-order topological insulators are a new class of topological phases of matter, originally conceived for electrons in solids. It has been suggested that $mathbb{Z}_N$ Berry phase (Berry phase quantized into $2pi/N$) is a useful tool to character
The transfer of topological concepts from the quantum world to classical mechanical and electronic systems has opened fundamentally new approaches to protected information transmission and wave guidance. A particularly promising technology are recent
We propose an electric circuit array with topologically protected uni-directional voltage modes at its boundary. Instead of external bias fields or floquet engineering, we employ negative impedance converters with current inversion (INICs) to accompl