ﻻ يوجد ملخص باللغة العربية
Higher-order topological insulators are a new class of topological phases of matter, originally conceived for electrons in solids. It has been suggested that $mathbb{Z}_N$ Berry phase (Berry phase quantized into $2pi/N$) is a useful tool to characterize the symmetry protected topological states, while the experimental evidence is still elusive. Recently, topolectrical circuits have emerged as a simple yet very powerful platform for studying topological physics that are challenging to realize in condensed matter systems. Here, we present the first experimental observation of second-order corner states characterized by $mathbb{Z}_3$ Berry phase in topolectrical circuits. We demonstrate theoretically and experimentally that the localized second-order topological states are protected by a generalized chiral symmetry of tripartite lattices, and they are pinned to zero energy. By introducing extra capacitors within sublattices in the circuit, we are able to examine the robustness of the zero modes against both chiral-symmetry conserving and breaking disturbances. Our work paves the way for testing exotic topological band theory by electrical-circuit experiments.
The study of the laws of nature has traditionally been pursued in the limit of isolated systems, where energy is conserved. This is not always a valid approximation, however, as the inclusion of features like gain and loss, or periodic driving, quali
Robust boundary states epitomize how deep physics can give rise to concrete experimental signatures with technological promise. Of late, much attention has focused on two distinct mechanisms for boundary robustness - topological protection, as well a
Symmetry-protected topological superconductors (TSCs) can host multiple Majorana zero modes (MZMs) at their edges or vortex cores, while whether the Majorana braiding in such systems is non-Abelian in general remains an open question. Here we uncover
Knots are intricate structures that cannot be unambiguously distinguished with any single topological invariant. Momentum space knots, in particular, have been elusive due to their requisite finely tuned long-ranged hoppings. Even if constructed, pro
Topological mechanics can realize soft modes in mechanical metamaterials in which the number of degrees of freedom for particle motion is finely balanced by the constraints provided by interparticle interactions. However, solid objects are generally