ﻻ يوجد ملخص باللغة العربية
We analyze the response of different ionospheric equivalent current modes to variations in the interplanetary magnetic field (IMF) components By and Bz. Each mode comprises a fixed spatial pattern whose amplitude varies in time, identified by a month-by-month empirical orthogonal function separation of surface measured magnetic field variance. Here we focus on four sets of modes that have been previously identified as DPY, DP2, NBZ, and DP1. We derive the cross-correlation function of each mode set with either IMF (B$_{y}$) or (B$_{z}$) for lags ranging from -10 to +600 mins with respect to the IMF state at the bow shock nose. For all four sets of modes, the average correlation can be reproduced by a sum of up to three linear responses to the IMF component, each centered on a different lag. These are interpreted as the statistical ionospheric responses to magnetopause merging (15- to 20-min lag) and magnetotail reconnection (60-min lag) and to IMF persistence. Of the mode sets, NBZ and DPY are the most predictable from a given IMF component, with DP1 (the substorm component) the least predictable. The proportion of mode variability explained by the IMF increases for the longer lags, thought to indicate conductivity feedbacks from substorms. In summary, we confirm the postulated physical basis of these modes and quantify their multiple reconfiguration timescales.
Long periods of strong southward magnetic fields are known to be the primary cause of intense geomagnetic storms. The majority of such events are caused by the passage over Earth of a magnetic ejecta. Irrespective of the interplanetary cause, fast-fo
Small interplanetary magnetic flux ropes (SIMFRs) are often detected by space satellites in the interplanetary space near 1 AU. These ropes can be fitted by a cylindrically symmetric magnetic model. The durations of SIMFRsare usually <12 h, and the d
The sheaths of compressed solar wind that precede interplanetary coronal mass ejections (ICMEs) commonly display large-amplitude magnetic field fluctuations. As ICMEs propagate radially from the Sun, the properties of these fluctuations may evolve si
We report THEMIS and Geotail observations of prolonged magnetopause (MP) expansions during long-lasting intervals of quasi-radial interplanetary magnetic field (IMF) and nearly constant solar wind dynamic pressure. The expansions were global: the mag
We study interplanetary coronal mass ejections (ICMEs) measured by probes at different heliocentric distances (0.3-1AU) to investigate the propagation of ICMEs in the inner heliosphere and determine how the generic features of ICMEs change with helio