ﻻ يوجد ملخص باللغة العربية
Long periods of strong southward magnetic fields are known to be the primary cause of intense geomagnetic storms. The majority of such events are caused by the passage over Earth of a magnetic ejecta. Irrespective of the interplanetary cause, fast-forward shocks often precede such strong southward B$_{z}$ periods. Here, we first look at all long periods of strong southward magnetic fields as well as fast-forward shocks measured by the textit{Wind} spacecraft in a 22.4-year span. We find that 76{%} of strong southward B$_{z}$ periods are preceded within 48 hours by at least a fast-forward shock but only about 23{%} of all shocks are followed within 48 hours by strong southward B$_{z}$ periods. Then, we devise a threshold-based probabilistic forecasting method based on the shock properties and the pre-shock near-Earth solar wind plasma and interplanetary magnetic field characteristics adopting a `superposed epoch analysis-like approach. Our analysis shows that the solar wind conditions in the 30 minutes interval around the arrival of fast-forward shocks have a significant contribution to the prediction of long-duration southward B$_{z}$ periods. This probabilistic model may provide on average a 14-hour warning time for an intense and long-duration southward B$_{z}$ period. Evaluating the forecast capability of the model through a statistical and skill score-based approach reveals that it outperforms a coin-flipping forecast. By using the information provided by the arrival of a fast-forward shock at L1, this model represents a marked improvement over similar forecasting methods. We outline a number of future potential improvements.
The acceleration of thermal solar wind protons at spherical interplanetary shocks driven by coronal mass ejections is investigated. The solar wind velocity distribution is represented using $kappa$-functions, which are transformed in response to simu
A statistical analysis of 15,210 electron velocity distribution function (VDF) fits, observed within $pm$2 hours of 52 interplanetary (IP) shocks by the $Wind$ spacecraft near 1 AU, is presented. This is the second in a three-part series on electron
Analysis of model fit results of 15,210 electron velocity distribution functions (VDFs), observed within $pm$2 hours of 52 interplanetary (IP) shocks by the Wind spacecraft near 1 AU, is presented as the third and final part on electron VDFs near IP
We analyze the response of different ionospheric equivalent current modes to variations in the interplanetary magnetic field (IMF) components By and Bz. Each mode comprises a fixed spatial pattern whose amplitude varies in time, identified by a month
We present waveform observations of electromagnetic lower hybrid and whistler waves with f_ci << f < f_ce downstream of four supercritical interplanetary (IP) shocks using the Wind search coil magnetometer. The whistler waves were observed to have a