ترغب بنشر مسار تعليمي؟ اضغط هنا

Core mass function of a single giant molecular cloud complex with ~10^4 cores

93   0   0.0 ( 0 )
 نشر من قبل Keping Qiu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Similarity in shape between the initial mass function (IMF) and the core mass functions (CMFs) in star-forming regions prompts the idea that the IMF originates from the CMF through a self-similar core-to-star mass mapping process. To accurately determine the shape of the CMF, we create a sample of 8,431 cores with the dust continuum maps of the Cygnus X giant molecular cloud complex, and design a procedure for deriving the CMF considering the mass uncertainty, binning uncertainty, sample incompleteness, and the statistical errors. The resultant CMF coincides well with the IMF for core masses from a few $M_{odot}$ to the highest masses of 1300 $M_{odot}$ with a power-law of ${rm d}N/{rm d}Mpropto M^{-2.30pm0.04}$, but does not present an obvious flattened turnover in the low-mass range as the IMF does. More detailed inspection reveals that the slope of the CMF steepens with increasing mass. Given the numerous high-mass star-forming activities of Cygnus X, this is in stark contrast with the existing top-heavy CMFs found in high-mass star-forming clumps. We also find that the similarity between the IMF and the mass function of cloud structures is not unique at core scales, but can be seen for cloud structures of up to several pc scales. Finally, our SMA observations toward a subset of the cores do not present evidence for the self-similar mapping. The latter two results indicate that the shape of the IMF may not be directly inherited from the CMF.

قيم البحث

اقرأ أيضاً

We present the results of a single-pointing survey of 207 dense cores embedded in Planck Galactic Cold Clumps distributed in five different environments ($lambda$ Orionis, Orion A, B, Galactic plane, and high latitudes) to identify dense cores on the verge of star formation for the study of the initial conditions of star formation. We observed these cores in eight molecular lines at 76-94 GHz using the Nobeyama 45-m telescope. We find that early-type molecules (e.g., CCS) have low detection rates and that late-type molecules (e.g., N$_2$H$^+$, c-C$_3$H$_2$) and deuterated molecules (e.g., N$_2$D$^+$, DNC) have high detection rates, suggesting that most of the cores are chemically evolved. The deuterium fraction (D/H) is found to decrease with increasing distance, indicating that it suffers from differential beam dilution between the D/H pair of lines for distant cores ($>$1 kpc). For $lambda$ Orionis, Orion A, and B located at similar distances, D/H is not significantly different, suggesting that there is no systematic difference in the observed chemical properties among these three regions. We identify at least eight high D/H cores in the Orion region and two at high latitudes, which are most likely to be close to the onset of star formation. There is no clear evidence of the evolutionary change in turbulence during the starless phase, suggesting that the dissipation of turbulence is not a major mechanism for the beginning of star formation as judged from observations with a beam size of 0.04 pc.
We present the first results of high-spectral resolution (0.023 km/s) N$_2$H$^+$ observations of dense gas dynamics at core scales (~0.01 pc) using the recently commissioned Argus instrument on the Green Bank Telescope (GBT). While the fitted linear velocity gradients across the cores measured in our targets nicely agree with the well-known power-law correlation between the specific angular momentum and core size, it is unclear if the observed gradients represent core-scale rotation. In addition, our Argus data reveal detailed and intriguing gas structures in position-velocity (PV) space for all 5 targets studied in this project, which could suggest that the velocity gradients previously observed in many dense cores actually originate from large-scale turbulence or convergent flow compression instead of rigid-body rotation. We also note that there are targets in this study with their star-forming disks nearly perpendicular to the local velocity gradients, which, assuming the velocity gradient represents the direction of rotation, is opposite to what is described by the classical theory of star formation. This provides important insight on the transport of angular momentum within star-forming cores, which is a critical topic on studying protostellar disk formation.
97 - B. Wiles , N. Lo , M. P. Redman 2016
Three bright molecular line sources in G333 have recently been shown to exhibit signatures of infall. We describe a molecular line radiative transfer modelling process which is required to extract the infall signature from Mopra and Nanten2 data. The observed line profiles differ greatly between individual sources but are reproduced well by variations upon a common unified model where the outflow viewing angle is the most significant difference between the sources. The models and data together suggest that the observed properties of the high-mass star-forming regions such as infall, turbulence, and mass are consistent with scaled-
176 - N. Lo , B. Wiles , M. P. Redman 2015
We present molecular line imaging observations of three massive molecular outflow sources, G333.6-0.2, G333.1-0.4, and G332.8-0.5, all of which also show evidence for infall, within the G333 giant molecular cloud (GMC). All three are within a beam si ze (36 arcseconds) of IRAS sources, 1.2-mm dust clumps, various masing species and radio continuum-detected HII regions and hence are associated with high-mass star formation. We present the molecular line data and derive the physical properties of the outflows including the mass, kinematics, and energetics and discuss the inferred characteristics of their driving sources. Outflow masses are of 10 to 40 solar masses in each lobe, with core masses of order 10^3 solar masses. outflow size scales are a few tenth of a parsec, timescales are of several x10^4 years, mass loss rates a few x10^-4 solar masses/year. We also find the cores are turbulent and highly supersonic.
We have performed an unbiased dense core survey toward the Orion A Giant Molecular Cloud in the C$^{18}$O ($J$=1--0) emission line taken with the Nobeyama Radio Observatory (NRO) 45-m telescope. The effective angular resolution of the map is 26, whic h corresponds to $sim$ 0.05 pc at a distance of 414 pc. By using the Herschel-Planck H$_2$ column density map, we calculate the C$^{18}$O fractional abundance and find that it is roughly constant over the column density range of $lesssim$ 5 $times$ 10$^{22}$ cm$^{-3}$, although a trend of C$^{18}$O depletion is determined toward higher column density. Therefore, C$^{18}$O intensity can follow the cloud structure reasonably well. The mean C$^{18}$O abundance in Orion A is estimated to be 5.7$times$10$^{-7}$, which is about 3 times larger than the fiducial value. We identified 746 C$^{18}$O cores with astrodendro and classified 709 cores as starless cores. We compute the core masses by decomposing the Herschel-Planck dust column density using the relative proportions of the C$^{18}$O integrated intensities of line-of-sight components. Applying this procedure, we attempt to remove the contribution of the background emission, i.e., the ambient gas outside the cores. Then, we derived mass function for starless cores and found that it resembles the stellar initial mass function (IMF). The CMF for starless cores, $dN/dM$, is fitted with a power-law relation of $M^alpha$ with a power index of $alpha = -$2.25$pm$ 0.16 at the high-mass slope ($gtrsim$ 0.44 $M_odot$). We also found that the ratio of each core mass to the total mass integrated along the line of sight is significantly large. Therefore, in the previous studies, the core masses derived from the dust image are likely to be overestimated at least by a factor of a few. Accordingly, such previous studies may underestimate the star formation efficiency of individual cores.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا