ﻻ يوجد ملخص باللغة العربية
The growth in data needs of modern applications has created significant challenges for modern systems leading a memory wall. Spintronic Domain Wall Memory (DWM), related to Spin-Transfer Torque Memory (STT-MRAM), provides near-SRAM read/write performance, energy savings and nonvolatility, potential for extremely high storage density, and does not have significant endurance limitations. However, DWMs benefits cannot address data access latency and throughput limitations of memory bus bandwidth. We propose PIRM, a DWM-based in-memory computing solution that leverages the properties of DWM nanowires and allows them to serve as polymorphic gates. While normally DWM is accessed by applying spin polarized currents orthogonal to the nanowire at access points to read individual bits, transverse access along the DWM nanowire allows the differentiation of the aggregate resistance of multiple bits in the nanowire, akin to a multilevel cell. PIRM leverages this transverse reading to directly provide bulk-bitwise logic of multiple adjacent operands in the nanowire, simultaneously. Based on this in-memory logic, PIRM provides a technique to conduct multi-operand addition and two operand multiplication using transverse access. PIRM provides a 1.6x speedup compared to the leading DRAM PIM technique for query applications that leverage bulk bitwise operations. Compared to the leading PIM technique for DWM, PIRM improves performance by 6.9x, 2.3x and energy by 5.5x, 3.4x for 8-bit addition and multiplication, respectively. For arithmetic heavy benchmarks, PIRM reduces access latency by 2.1x, while decreasing energy consumption by 25.2x for a reasonable 10% area overhead versus non-PIM DWM.
Racetrack memories (RMs) have significantly evolved since their conception in 2008, making them a serious contender in the field of emerging memory technologies. Despite key technological advancements, the access latency and energy consumption of an
Silicon-based Static Random Access Memories (SRAM) and digital Boolean logic have been the workhorse of the state-of-art computing platforms. Despite tremendous strides in scaling the ubiquitous metal-oxide-semiconductor transistor, the underlying te
Nearest neighbor (NN) search is an essential operation in many applications, such as one/few-shot learning and image classification. As such, fast and low-energy hardware support for accurate NN search is highly desirable. Ternary content-addressable
Topologically distinct magnetic structures like skyrmions, domain walls, and the uniformly magnetized state have multiple applications in logic devices, sensors, and as bits of information. One of the most promising concepts for applying these bits i
Massive multiple-input multiple-output (MIMO) systems are considered as one of the leading technologies employed in the next generations of wireless communication networks (5G), which promise to provide higher spectral efficiency, lower latency, and