ترغب بنشر مسار تعليمي؟ اضغط هنا

Photonic Computing to Accelerate Data Processing in Wireless Communications

81   0   0.0 ( 0 )
 نشر من قبل Mahsa Salmani
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Massive multiple-input multiple-output (MIMO) systems are considered as one of the leading technologies employed in the next generations of wireless communication networks (5G), which promise to provide higher spectral efficiency, lower latency, and more reliability. Due to the massive number of devices served by the base stations (BS) equipped with large antenna arrays, massive-MIMO systems need to perform high-dimensional signal processing in a considerably short amount of time. The computational complexity of such data processing, while satisfying the energy and latency requirements, is beyond the capabilities of the conventional widely-used digital electronics-based computing, i.e., Field-Programmable Gate Arrays (FPGAs) and Application-Specific Integrated Circuits (ASICs). In this paper, the speed and lossless propagation of light is exploited to introduce a photonic computing approach that addresses the high computational complexity required by massive-MIMO systems. The proposed computing approach is based on photonic implementation of multiply and accumulate (MAC) operation achieved by broadcast-and-weight (B&W) architecture. The B&W protocol is limited to real and positive values to perform MAC operations. In this work, preprocessing steps are developed to enable the proposed photonic computing architecture to accept any arbitrary values as the input. This is a requirement for wireless communication systems that typically deal with complex values. Numerical analysis shows that the performance of the wireless communication system is not degraded by the proposed photonic computing architecture, while it provides significant improvements in time and energy efficiency for massive-MIMO systems as compared to the most powerful Graphics Processing Units (GPUs).

قيم البحث

اقرأ أيضاً

A molecular communication channel is determined by the received signal. Received signal models form the basis for studies focused on modulation, receiver design, capacity, and coding depend on the received signal models. Therefore, it is crucial to m odel the number of received molecules until time $t$ analytically. Modeling the diffusion-based molecular communication channel with the first-hitting process is an open issue for a spherical transmitter. In this paper, we utilize the artificial neural networks technique to model the received signal for a spherical transmitter and a perfectly absorbing receiver (i.e., first hitting process). The proposed technique may be utilized in other studies that assume a spherical transmitter instead of a point transmitter.
In this work, spatial diversity techniques in the area of multiple-input multiple-output (MIMO) diffusion-based molecular communications (DBMC) are investigated. For transmitter-side spatial coding, Alamouti-type coding and repetition MIMO coding are proposed and analyzed. At the receiver-side, selection diversity, equal-gain combining, and maximum-ratio combining are studied as combining strategies. Throughout the numerical analysis, a symmetrical $2times 2$ MIMO-DBMC system is assumed. Furthermore, a trained artificial neural network is utilized to acquire the channel impulse responses. The numerical analysis demonstrates that it is possible to achieve a diversity gain in molecular communications. In addition, it is shown that for MIMO-DBMC systems repetition MIMO coding is superior to Alamouti-type coding.
In photonic neural network a key building block is the perceptron. Here, we describe and demonstrate a complex-valued photonic perceptron that combines time and space multiplexing in a fully passive silicon photonics integrated circuit. An input time dependent bit sequence is broadcasted into a few delay lines where the relative phases are trained by particle swarm algorithms toward the given task. Since only the phases of the propagating optical modes are trained, signal attenuation in the perceptron due to amplitude modulation is avoided. The perceptron performs binary pattern recognition and few bit delayed XOR operations up to 16 Gbps (limited by the used electronics) with Bit Error Rates as low as $10^{-6}$. The perceptron is fully integrated, silicon based, scalable, and can be used as a building block in large neural networks.
154 - Qing Xue , Xuming Fang , 2017
For future networks (i.e., the fifth generation (5G) wireless networks and beyond), millimeter-wave (mmWave) communication with large available unlicensed spectrum is a promising technology that enables gigabit multimedia applications. Thanks to the short wavelength of mmWave radio, massive antenna arrays can be packed into the limited dimensions of mmWave transceivers. Therefore, with directional beamforming (BF), both mmWave transmitters (MTXs) and mmWave receivers (MRXs) are capable of supporting multiple beams in 5G networks. However, for the transmission between an MTX and an MRX, most works have only considered a single beam, which means that they do not make full potential use of mmWave. Furthermore, the connectivity of single beam transmission can easily be blocked. In this context, we propose a single-user multi-beam concurrent transmission scheme for future mmWave networks with multiple reflected paths. Based on spatial spectrum reuse, the scheme can be described as a multiple-input multiple-output (MIMO) technique in beamspace (i.e., in the beam-number domain). Moreover, this study investigates the challenges and potential solutions for implementing this scheme, including multibeam selection, cooperative beam tracking, multi-beam power allocation and synchronization. The theoretical and numerical results show that the proposed beamspace SU-MIMO can largely improve the achievable rate of the transmission between an MTX and an MRX and, meanwhile, can maintain the connectivity.
Collocated data processing and storage are the norm in biological systems. Indeed, the von Neumann computing architecture, that physically and temporally separates processing and memory, was born more of pragmatism based on available technology. As o ur ability to create better hardware improves, new computational paradigms are being explored. Integrated photonic circuits are regarded as an attractive solution for on-chip computing using only light, leveraging the increased speed and bandwidth potential of working in the optical domain, and importantly, removing the need for time and energy sapping electro-optical
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا