ﻻ يوجد ملخص باللغة العربية
Most widely used density functional approximations suffer from self-interaction (SI) error, which can be corrected using the Perdew-Zunger (PZ) self-interaction correction (SIC). We implement the recently proposed size-extensive formulation of PZ-SIC using Fermi-Lowdin Orbitals (FLOs) in real space, which is amenable to systematic convergence and large-scale parallelization. We verify the new formulation within the generalized Slater scheme by computing atomization energies and ionization potentials of selected molecules and comparing to those obtained by existing FLOSIC implementations in Gaussian based codes. The results show good agreement between the two formulations, with new real-space results somewhat closer to experiment on average for the systems considered. We also obtain the ionization potentials and atomization energies by scaling down the Slater statistical average of SIC potentials. The results show that scaling down the average SIC potential improves both atomization energies and ionization potentials, bringing them closer to experiment. Finally, we verify the present formulation by calculating the barrier heights of chemical reactions in the BH6 dataset, where significant improvements are obtained relative to Gaussian based FLOSIC results.
The Perdew-Zunger self-interaction correction(PZ-SIC) improves the performance of density functional approximations(DFAs) for the properties that involve significant self-interaction error(SIE), as in stretched bond situations, but overcorrects for e
The Perdew-Zunger (PZ) method provides a way to remove the self-interaction (SI) error from density functional approximations on an orbital by orbital basis. The PZ method provides significant improvements for the properties such as barrier heights o
(Semi)-local density functional approximations (DFAs) suffer from self-interaction error (SIE). When the first ionization energy (IE) is computed as the negative of the highest-occupied orbital (HO) eigenvalue, DFAs notoriously underestimate them com
Perdew-Zunger self-interaction correction (PZ-SIC) offers a route to remove self-interaction errors on an orbital-by-orbital basis. A recent formulation of PZ-SIC by Pederson, Ruzsinszky and Perdew proposes restricting the unitary transformation to l
Self-interaction (SI) error, which results when exchange-correlation contributions to the total energy are approximated, limits the reliability of many density functional approximations. The Perdew-Zunger SI correction (PZSIC), when applied in conjun