ﻻ يوجد ملخص باللغة العربية
Self-interaction (SI) error, which results when exchange-correlation contributions to the total energy are approximated, limits the reliability of many density functional approximations. The Perdew-Zunger SI correction (PZSIC), when applied in conjunction with the local spin density approximation (LSDA), improves the description of many properties, but overall, this improvement is limited. Here we propose a modification to PZSIC that uses an iso-orbital indicator to identify regions where local SI corrections should be applied. Using this local-scaling SIC (LSIC) approach with LSDA, we analyze predictions for a wide range of properties including, for atoms, total energies, ionization potentials, and electron affinities, and for molecules, atomization energies, dissociation energy curves, reaction energies, and reaction barrier heights. LSIC preserves the results of PZSIC-LSDA for properties where it is successful and provides dramatic improvements for many of the other properties studied. Atomization energies calculated using LSIC are better than those of the Perdew, Burke, and Ernzerhof (PBE) generalized gradient approximation (GGA) and close to those obtained with the Strongly Constrained and Appropriately Normed (SCAN) meta-GGA. LSIC also restores the uniform gas limit for the exchange energy that is lost in PZSIC-LSDA. Further performance improvements may be obtained by an appropriate combination or modification of the local scaling factor and the particular density functional approximation.
The Perdew-Zunger(PZ) self-interaction correction (SIC) was designed to correct the one-electron limit of any approximate density functional for the exchange-correlation (xc) energy, while yielding no correction to the exact functional. Unfortunately
The Perdew-Zunger self-interaction correction(PZ-SIC) improves the performance of density functional approximations(DFAs) for the properties that involve significant self-interaction error(SIE), as in stretched bond situations, but overcorrects for e
Most widely used density functional approximations suffer from self-interaction (SI) error, which can be corrected using the Perdew-Zunger (PZ) self-interaction correction (SIC). We implement the recently proposed size-extensive formulation of PZ-SIC
The Perdew-Zunger (PZ) method provides a way to remove the self-interaction (SI) error from density functional approximations on an orbital by orbital basis. The PZ method provides significant improvements for the properties such as barrier heights o
We studied the effect of self-interaction error (SIE) on the static dipole polarizabilities of water clusters modelled with three increasingly sophisticated, non-empirical density functional approximations (DFAs), viz. the local spin density approxim