ترغب بنشر مسار تعليمي؟ اضغط هنا

A fast and efficient tool to study the rheology of dense suspensions

200   0   0.0 ( 0 )
 نشر من قبل Alessandro Monti
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A cutting-edge software is presented to tackle the Newton-Euler equations governing the dynamics of granular flows and dense suspensions in Newtonian fluids. In particular, we propose an implementation of a fixed-radius near neighbours search based on an efficient counting sort algorithm with an improved symmetric search. The adopted search method drastically reduces the computational cost and allows an efficient parallelisation even on a single node through the multi-threading paradigm. Emphasis is also given to the memory efficiency of the code since the history of the contacts among particles has to be traced to model the frictional contributions, when dealing with granular flows of rheological interest that consider non-smooth interacting particles. An effective procedure based on an estimate of the maximum number of the smallest particles surrounding the largest one (given the radii distribution) and a sort applied only to the surrounding particles only is implemented, allowing us to effectively tackle the rheology of non-monodispersed particles with high size-ratio in large domains. Finally, we present validations and verification of the numerical procedure, by comparing with previous simulations and experiments, and present new software capabilities.


قيم البحث

اقرأ أيضاً

We investigate the rheology of strain-hardening spherical capsules, from the dilute to the concentrated regime under a confined shear flow using three-dimensional numerical simulations. We consider the effect of capillary number, volume fraction and membrane inextensibility on the particle deformation and on the effective suspension viscosity and normal stress differences of the suspension. The suspension displays a shear-thinning behaviour which is a characteristic of soft particles such as emulsion droplets, vesicles, strain-softening capsules, and red blood cells. We find that the membrane inextensibility plays a significant role on the rheology and can almost suppress the shear-thinning. For concentrated suspensions a non-monotonic dependence of the normal stress differences on the membrane inextensibility is observed, reflecting a similar behaviour in the particle shape. The effective suspension viscosity, instead, grows and eventually saturates, for very large inextensibilities, approaching the solid particle limit. In essence, our results reveal that strain-hardening capsules share rheological features with both soft and solid particles depending on the ratio of the area dilatation to shear elastic modulus. Furthermore, the suspension viscosity exhibits a universal behaviour for the parameter space defined by the capillary number and the membrane inextensibility, when introducing the particle geometrical changes at the steady-state in the definition of the volume fraction.
Dense suspensions of hard particles in a Newtonian liquid can be jammed by shear when the applied stress exceeds a certain threshold. However, this jamming transition from a fluid into a solidified state cannot be probed with conventional steady-stat e rheology because the stress distribution inside the material cannot be controlled with sufficient precision. Here we introduce and validate a method that overcomes this obstacle. Rapidly propagating shear fronts are generated and used to establish well-controlled local stress conditions that sweep across the material. Exploiting such transient flows, we are able to track how a dense suspension approaches its shear jammed state dynamically, and can quantitatively map out the onset stress for solidification in a state diagram.
We develop a two-fluid model (TFM) for simulation of thermal transport coupled to particle migration in flows of non-Brownian suspensions. Specifically, we propose a closure relation for the inter-phase heat transfer coefficient of the TFM as a funct ion of the particle volume fraction, particle diameter, magnitude of the particle phases shear-rate tensor, and the thermal diffusivity of the particles. The effect of shear-induced migration in the particulate phase is captured through the use of state-of-the-art rheological closures. We validate the proposed interphase heat transfer coupling by calibrating it against previous experiments in a Couette cell. We find that, when the shear rate is controlled by the rotation of the inner cylinder, the shear and thermal gradients aid each other to increase the particle migration when temperature difference between the inner and outer walls, $Delta T = T_mathrm{in} - T_mathrm{out} < 0$. Meanwhile, for $Delta T > 0$, the shear and thermal gradients oppose each other, resulting in diminished particle migration, and a more uniform distribution of the particulate phase across the gap. Within the TFM framework, we identify the origin and functional form of a thermo-rheological migration force that rationalizes our observations. We also investigate the interplay of shear and thermal gradients in the presence of recirculating regions in an eccentric Couette cell (with offset axis and rotating inner cylinder). Simulations reveal that the system Nusselt number increases with the eccentricity $E$ for $Delta T > 0$, but a maximum occurs for $Delta T < 0$ at $E = 0.4$. This observation is explained by showing that, for $E>0.4$ and $Delta T < 0$, significant flow recirculation enhances particle inhomogeneity, which in turn reduces heat transfer in the system (compared to $Delta T > 0$).
The dynamics of an adhesive two-dimensional vesicle doublet under various flow conditions is investigated numerically using a high-order, adaptive-in-time boundary integral method. In a quiescent flow, two nearby vesicles move slowly towards each oth er under the adhesive potential, pushing out fluid between them to form a vesicle doublet at equilibrium. A lubrication analysis on such draining of a thin film gives the dependencies of draining time on adhesion strength and separation distance that are in good agreement with numerical results. In a planar extensional flow we find a stable vesicle doublet forms only when two vesicles collide head-on around the stagnation point. In a microfluid trap where the stagnation of an extensional flow is dynamically placed in the middle of a vesicle doublet through an active control loop, novel dynamics of a vesicle doublet are observed. Numerical simulations show that there exists a critical extensional flow rate above which adhesive interaction is overcome by the diverging stream, thus providing a simple method to measure the adhesion strength between two vesicle membranes. In a planar shear flow, numerical simulations reveal that a vesicle doublet may form provided that the adhesion strength is sufficiently large at a given vesicle reduced area. Once a doublet is formed, its oscillatory dynamics is found to depend on the adhesion strength and their reduced area. Furthermore the effective shear viscosity of a dilute suspension of vesicle doublets is found to be a function of the reduced area. Results from these numerical studies and analysis shed light on the hydrodynamic and rheological consequences of adhesive interactions between vesicles in a viscous fluid.
Dense suspensions have previously been shown to produce a range of anomalous and gravity-defying behaviors when subjected to strong vibrations in the direction of gravity. These behaviors have previously been interpreted in terms of rigid body phenom ena and shear-thickening, but here we examine discontinuous shear thickening (DST) as the cause of a negative viscosity effect, i.e. the average shear rate being opposite to the direction of the average shear stress. Using ideas from the Wyart and Cates modeling framework, we show that such a negative viscosity can be achieved in shear flows driven by oscillating stress with both square and sinusoidal wave forms. We extend this same modeling approach to study falling films in a vibrating gravitational field, where we similarly find it is possible to attain an overall flow opposite to the direction of gravity. Preliminary experimental findings are also provided in support of the modeling work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا