ﻻ يوجد ملخص باللغة العربية
We investigate the rheology of strain-hardening spherical capsules, from the dilute to the concentrated regime under a confined shear flow using three-dimensional numerical simulations. We consider the effect of capillary number, volume fraction and membrane inextensibility on the particle deformation and on the effective suspension viscosity and normal stress differences of the suspension. The suspension displays a shear-thinning behaviour which is a characteristic of soft particles such as emulsion droplets, vesicles, strain-softening capsules, and red blood cells. We find that the membrane inextensibility plays a significant role on the rheology and can almost suppress the shear-thinning. For concentrated suspensions a non-monotonic dependence of the normal stress differences on the membrane inextensibility is observed, reflecting a similar behaviour in the particle shape. The effective suspension viscosity, instead, grows and eventually saturates, for very large inextensibilities, approaching the solid particle limit. In essence, our results reveal that strain-hardening capsules share rheological features with both soft and solid particles depending on the ratio of the area dilatation to shear elastic modulus. Furthermore, the suspension viscosity exhibits a universal behaviour for the parameter space defined by the capillary number and the membrane inextensibility, when introducing the particle geometrical changes at the steady-state in the definition of the volume fraction.
A concentrated, vertical monolayer of identical spherical squirmers, which may be bottom-heavy, and which are subjected to a linear shear flow, is modelled computationally by two different methods: Stokesian dynamics, and a lubrication-theory-based m
The mechanical deformability of single cells is an important indicator for various diseases such as cancer, blood diseases and inflammation. Lab-on-a-chip devices allow to separate such cells from healthy cells using hydrodynamic forces. We perform h
The dynamics of an adhesive two-dimensional vesicle doublet under various flow conditions is investigated numerically using a high-order, adaptive-in-time boundary integral method. In a quiescent flow, two nearby vesicles move slowly towards each oth
A cutting-edge software is presented to tackle the Newton-Euler equations governing the dynamics of granular flows and dense suspensions in Newtonian fluids. In particular, we propose an implementation of a fixed-radius near neighbours search based o
We show that simulations of polymer rheology at a fluctuating mesoscopic scale and at the macroscopic scale where flow instabilities occur can be achieved at the same time with dissipative particle dynamics (DPD) technique.} We model the visco-elasti