ترغب بنشر مسار تعليمي؟ اضغط هنا

Relativistic coupled-cluster calculation of hyperfine-structure constants of $^{229}$Th$^{3+}$ and evaluation of the electromagnetic nuclear moments of $^{229}$Th

109   0   0.0 ( 0 )
 نشر من قبل Feichen Li
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

$^{229}$Th is a promising candidate for developing a nuclear optical clock and searching the new physics beyond the standard model. Accurate knowledge of the nuclear properties of $^{229}$Th is very important. In this work, we calculate hyperfine-structure constants for the first four states of $^{229}$Th$^{3+}$ using the relativistic coupled-cluster method based on the Gauss basis set. The no-pair Dirac-Coulomb-Breit Hamiltonian with the lowest-order quantum electrodynamics (QED) correction is the starting point, together with all linear and non-linear terms of single and double excitations are included in coupled-cluster calculation. With the measured value of the hyperfine-structure constants [Phys. Rev. Lett. 106. 223001(2011)], we get the magnetic dipole moment, $mu=0.359(9)$, and the electric quadrupole moment, $Q=2.95(7)$, of the $^{229}$Th nucleus. Our magnetic dipole moment is perfectly consistent with the recommended values, $mu=0.360(7)$, from the all-order calculation by Safronova textit{et. al.}[Phys.Rev.A 88, 060501 (2013)], but our electric quadrupole moment is smaller than their recommended value, $Q=3.11(6)$, about 5%. Our results show that the non-linear terms of single and double excitations, which were not included in the all-order calculation by Safronova textit{et. al.}, are very crucial to produce a precise $Q$ value of $^{229}$Th. Additionally, we also present magnetic octupole hyperfine-structure constants and some important non-diagonal hyperfine transition matrix elements, which are required for further extracting the magnetic octupole moment $Omega$ of $^{229}$Th nucleus.

قيم البحث

اقرأ أيضاً

Thorium-229 is a unique case in nuclear physics: it presents a metastable first excited state Th-229m, just a few electronvolts above the nuclear ground state. This so-called isomer is accessible by VUV lasers, which allows transferring the amazing p recision of atomic laser spectroscopy to nuclear physics. Being able to manipulate the Th-229 nuclear states at will opens up a multitude of prospects, from studies of the fundamental interactions in physics to applications as a compact and robust nuclear clock. However, direct optical excitation of the isomer or its radiative decay back to the ground state has not yet been observed, and a series of key nuclear structure parameters such as the exact energies and half-lives of the low-lying nuclear levels of Th-229 are yet unknown. Here we present the first active optical pumping into Th-229m. Our scheme employs narrow-band 29 keV synchrotron radiation to resonantly excite the second excited state, which then predominantly decays into the isomer. We determine the resonance energy with 0.07 eV accuracy, measure a half-life of 82.2 ps, an excitation linewidth of 1.70 neV, and extract the branching ratio of the second excited state into the ground and isomeric state respectively. These measurements allow us to re-evaluate gamma spectroscopy data that have been collected over 40~years.
305 - V.I. Isakov 2017
Electromagnetic properties of the deformed neutron-odd nucleus $^{229}$Th are investigated in the framework of the unified model, with primary emphasis upon the properties of the low-lying isomeric state.
67 - S.G. Porsev , M.S. Safronova , 2021
Determination of nuclear moments for many nuclei relies on the computation of hyperfine constants, with theoretical uncertainties directly affecting the resulting uncertainties of the nuclear moments. In this work we improve the precision of such met hod by including for the first time an iterative solution of equations for the core triple cluster amplitudes into the relativistic coupled-cluster method, with large-scale complete basis sets. We carried out calculations of the energies and magnetic dipole and electric quadrupole hyperfine structure constants for the low-lying states of 229Th^(3+) in the framework of such relativistic coupled-cluster single double triple (CCSDT) method. We present a detailed study of various corrections to all calculated properties. Using the theory results and experimental data we found the nuclear magnetic dipole and electric quadrupole moments to be mu = 0.366(6)*mu_N and Q = 3.11(2) eb, and reducing the uncertainty of the quadrupole moment by a factor of three. The Bohr-Weisskopf effect of the finite nuclear magnetization is investigated, with bounds placed on the deviation of the magnetization distribution from the uniform one.
We perform coincidence measurements between $alpha$ particles and $gamma$ rays from a $^{233}$U source to determine the half-lives of the excited state in a $^{229}$Th nucleus. We first prove that the half-lives of 42.43- and 164.53-keV states are co nsistent with literature values, whereas that of the 97.14-keV state (93(7) ps) deviates from a previously measured value (147(12) ps). The half-lives of 71.83- and 163.25-keV states are determined for the first time. Based on the obtained half-lives and the Alaga rule, we estimate the radiative half-life of the low-energy isomeric state ($^{229m}$Th) to be $5.0(11)times10^{3}$ s, which is one of the key parameters for the frequency standard based on $^{229}$Th.
A new approach to observe the radiative decay of the $^{229}$Th nuclear isomer, and to determine its energy and radiative lifetime, is presented. Situated at a uniquely low excitation energy, this nuclear state might be a key ingredient for the devel opment of a nuclear clock, a nuclear laser and the search for time variations of the fundamental constants. The isomers $gamma$ decay towards the ground state will be studied with a high-resolution VUV spectrometer after its production by the $beta$ decay of $^{229}$Ac. The novel production method presents a number of advantages asserting its competitive nature with respect to the commonly used $^{233}$U $alpha$-decay recoil source. In this paper, a feasibility analysis of this new concept, and an experimental investigation of its key ingredients, using a pure $^{229}$Ac ion beam produced at the ISOLDE radioactive beam facility, is reported.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا