ﻻ يوجد ملخص باللغة العربية
Thorium-229 is a unique case in nuclear physics: it presents a metastable first excited state Th-229m, just a few electronvolts above the nuclear ground state. This so-called isomer is accessible by VUV lasers, which allows transferring the amazing precision of atomic laser spectroscopy to nuclear physics. Being able to manipulate the Th-229 nuclear states at will opens up a multitude of prospects, from studies of the fundamental interactions in physics to applications as a compact and robust nuclear clock. However, direct optical excitation of the isomer or its radiative decay back to the ground state has not yet been observed, and a series of key nuclear structure parameters such as the exact energies and half-lives of the low-lying nuclear levels of Th-229 are yet unknown. Here we present the first active optical pumping into Th-229m. Our scheme employs narrow-band 29 keV synchrotron radiation to resonantly excite the second excited state, which then predominantly decays into the isomer. We determine the resonance energy with 0.07 eV accuracy, measure a half-life of 82.2 ps, an excitation linewidth of 1.70 neV, and extract the branching ratio of the second excited state into the ground and isomeric state respectively. These measurements allow us to re-evaluate gamma spectroscopy data that have been collected over 40~years.
The low-lying isomeric state of $^{229}$Th provides unique opportunities for high-resolution laser spectroscopy of the atomic nucleus. We determine the energy of this isomeric state by taking the absolute energy difference between the excitation ener
A new approach to observe the radiative decay of the $^{229}$Th nuclear isomer, and to determine its energy and radiative lifetime, is presented. Situated at a uniquely low excitation energy, this nuclear state might be a key ingredient for the devel
Radioactive $^{233}$U alpha recoil sources are being considered for the production of a thorium ion source to study the low-energy isomer in $^{229}$Th with high-resolution collinear laser spectroscopy at the IGISOL facility of the University of Jyva
We perform coincidence measurements between $alpha$ particles and $gamma$ rays from a $^{233}$U source to determine the half-lives of the excited state in a $^{229}$Th nucleus. We first prove that the half-lives of 42.43- and 164.53-keV states are co
Given the drastic progress achieved during recent years in our knowledge on the decay and nuclear properties of the thorium isomer 229mTh, the focus of research on this potential nuclear clock transition will turn in the near future from the nuclear