ترغب بنشر مسار تعليمي؟ اضغط هنا

Groups as automorphisms of dessins denfants

146   0   0.0 ( 0 )
 نشر من قبل Ruben Hidalgo
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

It is known that every finite group can be represented as the full group of automorphisms of a suitable compact dessin denfant. In this paper, we give a constructive and easy proof that the same holds for any countable group by considering non-compact dessins. Moreover, we show that any tame action of a countable group is so realizable.

قيم البحث

اقرأ أيضاً

191 - Tushar Kanta Naik , Neha Nanda , 2019
The twin group $T_n$ is a right angled Coxeter group generated by $n-1$ involutions and the pure twin group $PT_n$ is the kernel of the natural surjection from $T_n$ onto the symmetric group on $n$ symbols. In this paper, we investigate some structur al aspects of these groups. We derive a formula for the number of conjugacy classes of involutions in $T_n$, which quite interestingly, is related to the well-known Fibonacci sequence. We also derive a recursive formula for the number of $z$-classes of involutions in $T_n$. We give a new proof of the structure of $Aut(T_n)$ for $n ge 3$, and show that $T_n$ is isomorphic to a subgroup of $Aut(PT_n)$ for $n geq 4$. Finally, we construct a representation of $T_n$ to $Aut(F_n)$ for $n ge 2$.
Quandle is an algebraic system with one binary operation, but it is quite different from a group. Quandle has its origin in the knot theory and good relationships with the theory of symmetric spaces, so it is well-studied from points of view of both areas. In the present paper, we investigate a special kind of quandles, called generalized Alexander quandles $Q(G,psi)$, which is defined by a group $G$ together with its group automorphism $psi$. We develop the quandle invariants for generalized Alexander quandles. As a result, we prove that there is a one-to-one correspondence between generalized Alexander quandles arising from symmetric groups $Sf_n$ and the conjugacy classes of $Sf_n$ for $3 leq n leq 30$ with $n eq 6,15$, and the case $n=6$ is also discussed.
Almost two decades ago Zapponi introduced a notion of orientability of a clean dessin denfant, based on an orientation of the embedded bipartite graph. We extend this concept, which we call Z-orientability to distinguish it from the traditional topol ogical definition, to the wider context of all dessins, and we use it to define a concept of twist orientability, which also takes account of the Z-orientability properties of those dessins obtained by permuting the roles of white and black vertices and face-centres. We observe that these properties are Galois-invariant, and we study the extent to which they are determined by the standard invariants such as the passport and the monodromy and automorphism groups. We find that in general they are independent of these invariants, but in the case of regular dessins they are determined by the monodromy group.
111 - Gareth A. Jones 2018
A detailed proof is given of a theorem describing the centraliser of a transitive permutation group, with applications to automorphism groups of objects in various categories of maps, hypermaps, dessins, polytopes and covering spaces, where the autom orphism group of an object is the centraliser of its monodromy group. An alternative form of the theorem, valid for finite objects, is discussed, with counterexamples based on Baumslag--Solitar groups to show how it fails more generally. The automorphism groups of objects with primitive monodromy groups are described, as are those of non-connected objects.
An odd Coxeter group $W$ is one which admits a Coxeter system $(W,S)$ for which all the exponents $m_{ij}$ are either odd or infinity. The paper investigates the family of odd Coxeter groups whose associated labeled graphs $mathcal{V}_{(W,S)}$ are tr ees. It is known that two Coxeter groups in this family are isomorphic if and only if they admit Coxeter systems having the same rank and the same multiset of finite exponents. In particular, each group in this family is isomorphic to a group that admits a Coxeter system whose associated labeled graph is a star shaped tree. We give the complete description of the automorphism group of this group, and derive a sufficient condition for the splitting of the automorphism group as a semi-direct product of the inner and the outer automorphism groups. As applications, we prove that Coxeter groups in this family satisfy the $R_infty$-property and are (co)-Hopfian. We compare structural properties, automorphism groups, $R_infty$-property and (co)-Hopfianity of a special odd Coxeter group whose only finite exponent is three with the braid group and the twin group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا