ﻻ يوجد ملخص باللغة العربية
The twin group $T_n$ is a right angled Coxeter group generated by $n-1$ involutions and the pure twin group $PT_n$ is the kernel of the natural surjection from $T_n$ onto the symmetric group on $n$ symbols. In this paper, we investigate some structural aspects of these groups. We derive a formula for the number of conjugacy classes of involutions in $T_n$, which quite interestingly, is related to the well-known Fibonacci sequence. We also derive a recursive formula for the number of $z$-classes of involutions in $T_n$. We give a new proof of the structure of $Aut(T_n)$ for $n ge 3$, and show that $T_n$ is isomorphic to a subgroup of $Aut(PT_n)$ for $n geq 4$. Finally, we construct a representation of $T_n$ to $Aut(F_n)$ for $n ge 2$.
We combine classical methods of combinatorial group theory with the theory of small cancellations over relatively hyperbolic groups to construct finitely generated torsion-free groups that have only finitely many classes of conjugate elements. Moreov
Given a group $G$ and a subset $X subset G$, an element $g in G$ is called quasi-positive if it is equal to a product of conjugates of elements in the semigroup generated by $X$. This notion is important in the context of braid groups, where it has b
It is known that every finite group can be represented as the full group of automorphisms of a suitable compact dessin denfant. In this paper, we give a constructive and easy proof that the same holds for any countable group by considering non-compac
Study of certain isotopy classes of a finite collection of immersed circles without triple or higher intersections on closed oriented surfaces is considered as a planar analogue of virtual knot theory with the genus zero case corresponding to classic
Quandle is an algebraic system with one binary operation, but it is quite different from a group. Quandle has its origin in the knot theory and good relationships with the theory of symmetric spaces, so it is well-studied from points of view of both