ﻻ يوجد ملخص باللغة العربية
We study coupled non-Hermitian Rice-Mele chains, which consist of Su-Schrieffer-Heeger (SSH) chain system with staggered on-site imaginary potentials. In two dimensional (2D) thermodynamic limit, the exceptional points (EPs) are shown to exhibit topological feature: EPs correspond to topological defects of a real auxiliary 2D vector field in k space, which is obtained from the Bloch states of the non-Hermitian Hamiltonian. As a topological invariant, the topological charges of EPs can be $pm$1/2, obtained by the winding number calculation. Remarkably, we find that such a topological characterization remains for a finite number of coupled chains, even a single chain, in which the momentum in one direction is discrete. It shows that the EPs in the quasi-1D system still exhibit topological characteristics and can be an abridged version for a 2D system with symmetry protected EPs that are robust in perturbations, which proves that topological invariants for a quasi-1D system can be extracted from the projection of the corresponding 2D limit system on it.
We investigate the effects of non-Hermiticity on topological pumping, and uncover a connection between a topological edge invariant based on topological pumping and the winding numbers of exceptional points. In Hermitian lattices, it is known that th
The fidelity susceptibility has been used to detect quantum phase transitions in the Hermitian quantum many-body systems over a decade, where the fidelity susceptibility density approaches $+infty$ in the thermodynamic limits. Here the fidelity susce
We experimentally simulate in a photonic setting non-Hermitian (NH) metals characterized by the topological properties of their nodal band structures. Implementing nonunitary time evolution in reciprocal space followed by interferometric measurements
Over the past two decades, open systems that are described by a non-Hermitian Hamiltonian have become a subject of intense research. These systems encompass classical wave systems with balanced gain and loss, semiclassical models with mode selective
We investigate topological charge pumping in a system of interacting bosons in the tight-binding limit, described by the Rice-Mele model. An appropriate topological invariant for the many-body case is the change of polarization per pump cycle, which