ﻻ يوجد ملخص باللغة العربية
The Cherenkov Telescope Array (CTA) will be the next generation gamma-ray observatory and will be the major global instrument for very-high-energy astronomy over the next decade, offering 5 - 10 x better flux sensitivity than current generation gamma-ray telescopes. Each telescope will provide a snapshot of gamma-ray induced particle showers by capturing the induced Cherenkov emission at ground level. The simulation of such events provides images that can be used as training data for convolutional neural networks (CNNs) to determine the energy of the initial gamma rays. Compared to other state-of-the-art algorithms, analyses based on CNNs promise to further enhance the performance to be achieved by CTA. Pattern spectra are commonly used tools for image classification and provide the distributions of the shapes and sizes of various objects comprising an image. The use of relatively shallow CNNs on pattern spectra would automatically select relevant combinations of features within an image, taking advantage of the 2D nature of pattern spectra. In this work, we generate pattern spectra from simulated gamma-ray events instead of using the raw images themselves in order to train our CNN for energy reconstruction. This is different from other relevant learning and feature selection methods that have been tried in the past. Thereby, we aim to obtain a significantly faster and less computationally intensive algorithm, with minimal loss of performance.
The Cherenkov Telescope Array (CTA) will be the worlds leading ground-based gamma-ray observatory allowing us to study very high energy phenomena in the Universe. CTA will produce huge data sets, of the order of petabytes, and the challenge is to fin
Very High Energy gamma-ray astronomy with the Cherenkov Telescope Array (CTA) is evolving towards the model of a public observatory. Handling, processing and archiving the large amount of data generated by the CTA instruments and delivering scientifi
The Cherenkov Telescope Array (CTA) observatory will be one of the largest ground-based very high-energy gamma-ray observatories. The On-Site Analysis will be the first CTA scientific analysis of data acquired from the array of telescopes, in both no
The Cherenkov Telescope Array (CTA) Observatory must be capable of issuing fast alerts on variable and transient sources to maximize the scientific return. This will be accomplished by means of a Real-Time Analysis (RTA) pipeline, a key system of the
The Cherenkov Telescope Array (CTA), the new generation very high-energy gamma-ray observatory, will improve the flux sensitivity of the current Cherenkov telescopes by an order of magnitude over a continuous range from about 10 GeV to above 100 TeV.