ﻻ يوجد ملخص باللغة العربية
The Cherenkov Telescope Array (CTA) Observatory must be capable of issuing fast alerts on variable and transient sources to maximize the scientific return. This will be accomplished by means of a Real-Time Analysis (RTA) pipeline, a key system of the CTA observatory. The latency and sensitivity requirements of the alarm system impose a challenge because of the large foreseen data flow rate, between 0.5 and 8 GB/s. As a consequence, substantial efforts toward the optimization of this high-throughput computing service are envisaged, with the additional constraint that the RTA should be performed on-site (as part of the auxiliary infrastructure of the telescopes). In this work, the functional design of the RTA pipeline is presented.
The Cherenkov Telescope Array (CTA), the new generation very high-energy gamma-ray observatory, will improve the flux sensitivity of the current Cherenkov telescopes by an order of magnitude over a continuous range from about 10 GeV to above 100 TeV.
The Cherenkov Telescope Array (CTA) is the next generation observatory for the study of very high-energy gamma rays from about 20 GeV up to 300 TeV. Thanks to the large effective area and field of view, the CTA observatory will be characterized by an
The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to the VHE gamma-ray astrophysics in the energy range 30 GeV-100 TeV, which will improve by about one order of magnitude
The single mirror small-size telescope (SST-1M) is one of the telescope projects being proposed for the Cherenkov Telescope Array observatory by a sub-consortium of Polish and Swiss institutions. The SST-1M prototype structure is currently being cons
The Cherenkov Telescope Array (CTA) Observatory, with dozens of telescopes located in both the Northern and Southern Hemispheres, will be the largest ground-based gamma-ray observatory and will provide broad energy coverage from 20 GeV to 300 TeV. Th