ترغب بنشر مسار تعليمي؟ اضغط هنا

First Light And Reionisation Epoch Simulations (FLARES) III: The properties of massive dusty galaxies at cosmic dawn

160   0   0.0 ( 0 )
 نشر من قبل Aswin Vijayan P
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the First Light And Reionisation Epoch Simulations (textsc{Flares}) we explore the dust driven properties of massive high-redshift galaxies at $zin[5,10]$. By post-processing the galaxy sample using the radiative transfer code textsc{skirt} we obtain the full spectral energy distribution. We explore the resultant luminosity functions, IRX-$beta$ relations as well as the luminosity-weighted dust temperatures in the Epoch of Reionisation (EoR). We find that most of our results are in agreement with the current set of observations, but under-predict the number densities of bright IR galaxies, which are extremely biased towards the most overdense regions. We see that the textsc{Flares} IRX-$beta$ relation (for $5le zle8$) predominantly follows the local starburst relation. The IRX shows an increase with stellar mass, plateauing at the high-mass end ($sim10^{10}$M$_{odot}$) and shows no evolution in the median normalisation with redshift. We also look at the dependence of the peak dust temperature (T$_{mathrm{peak}}$) on various galaxy properties including the stellar mass, IR luminosity and sSFR, finding the correlation to be strongest with sSFR. The luminosity-weighted dust temperatures increase towards higher redshifts, with the slope of the T$_{mathrm{peak}}$ - redshift relation showing a higher slope than the lower redshift relations obtained from previous observational and theoretical works. The results from textsc{Flares}, which is able to provide a better statistical sample of high-redshift galaxies compared to other simulations, provides a distinct vantage point for the high-redshift Universe.

قيم البحث

اقرأ أيضاً

We present the photometric properties of galaxies in the First Light and Reionisation Epoch Simulations (FLARES). The simulations trace the evolution of galaxies in a range of overdensities through the Epoch of Reionistion (EoR). With a novel weighti ng scheme we combine these overdensities, extending significantly the dynamic range of observed composite distribution functions compared to periodic simulation boxes. FLARES predicts a significantly larger number of intrinsically bright galaxies, which can be explained through a simple model linking dust-attenuation to the metal content of the interstellar medium, using a line-of-sight (LOS) extinction model. With this model we present the photometric properties of the FLARES galaxies for $z in [5,10]$. We show that the ultraviolet (UV) luminosity function (LF) matches the observations at all redshifts. The function is fit by Schechter and double power-law forms, with the latter being favoured at these redshifts by the FLARES composite UV LF. We also present predictions for the UV continuum slope as well as the attenuation in the UV. The impact of environment on the UV LF is also explored, with the brightest galaxies forming in the densest environments. We then present the line luminosity and equivalent widths of some prominent nebular emission lines arising from the galaxies, finding rough agreement with available observations. We also look at the relative contribution of obscured and unobscured star formation, finding comparable contributions at these redshifts.
We introduce the First Light And Reionisation Epoch Simulations (FLARES), a suite of zoom simulations using the EAGLE model. We resimulate a range of overdensities during the Epoch of Reionisation (EoR) in order to build composite distribution functi ons, as well as explore the environmental dependence of galaxy formation and evolution during this critical period of galaxy assembly. The regions are selected from a large $(3.2 ;mathrm{cGpc})^{3}$ parent volume, based on their overdensity within a sphere of radius $14,h^{-1};mathrm{cMpc}$. We then resimulate with full hydrodynamics, and employ a novel weighting scheme that allows the construction of composite distribution functions that are representative of the full parent volume. This significantly extends the dynamic range compared to smaller volume periodic simulations. We present an analysis of the galaxy stellar mass function (GSMF), the star formation rate distribution function (SFRF) and the star forming sequence (SFS) predicted by flares, and compare to a number of observational and model constraints. We also analyse the environmental dependence over an unprecedented range of overdensity. Both the GSMF and the SFRF exhibit a clear double-Schechter form, up to the highest redshifts ($z = 10$). We also find no environmental dependence of the SFS normalisation. The increased dynamic range probed by FLARES will allow us to make predictions for a number of large area surveys that will probe the EoR in coming years, such as WFIRST and Euclid.
Cosmic Dawn (CoDa) II yields the first statistically-meaningful determination of the relative contribution to reionization by galaxies of different halo mass, from a fully-coupled radiation-hydrodynamics simulation of the epoch of reionization large enough ($sim$ 100 Mpc) to model global reionization while resolving the formation of all galactic halos above $sim 10^8 M_odot$. Cell transmission inside high-mass haloes is bi-modal -- ionized cells are transparent, while neutral cells absorb the photons their stars produce - and the halo escape fraction $f_{esc}$ reflects the balance of star formation rate (SFR) between these modes. The latter is increasingly prevalent at higher halo mass, driving down $f_{esc}$ (we provide analytical fits to our results), whereas halo escape luminosity, proportional to $f_{esc} times$SFR, increases with mass. Haloes with dark matter masses within $6.10^{8} M_odot < M_h < 3.10^{10} M_odot$ produce $sim 80$% of the escaping photons at z=7, when the Universe is 50% ionized, making them the main drivers of cosmic reionization. Less massive haloes, though more numerous, have low SFRs and contribute less than 10% of the photon budget then, despite their high $f_{esc}$. High mass haloes are too few and too opaque, contributing $<10$% despite their high SFRs. The dominant mass range is lower (higher) at higher (lower) redshift, as mass function and reionization advance together (e.g. at z$=8.5$, x$_{rm HI}=0.9$, $M_h < 5.10^9 M_odot$ haloes contributed $sim$80%). Galaxies with UV magnitudes $M_{AB1600}$ between $-12$ and $-19$ dominated reionization between z$=6$ and 8.
We explore how the estimated star formation rate (SFR) of a sample of isolated, massive dusty star-forming galaxies at early cosmic epochs ($1.5 < z < 3.5$) changes when their ultraviolet (UV) to near-infrared (NIR) spectral energy distribution is ex tended to longer wavelengths by adding far-infrared/sub-millimeter data to trace the reprocessed radiation from dust heated by young massive stars. We use large-area surveys with multi-wavelength datasets that include DECam UV-to-optical, VICS82 NIR, Spitzer-IRAC NIR, and Herschel-SPIRE far-infrared/sub-millimeter data. We find that the inclusion of far-infrared/sub-millimeter data leads to SFRs that span $sim$100-3500 $M_{odot} yr^{-1}$ and are higher than the extinction-corrected UV-based SFR by an average factor of $sim$3.5, and by a factor of over 10 in many individual galaxies. Our study demonstrates the importance of far-IR/sub-millimeter data for deriving accurate SFRs in massive dusty galaxies at early epochs, and underscores the need for next-generation far-IR/sub-millimeter facilities with high sensitivity, field of view, and angular resolution.
Small galaxies are thought to be the main contributors to the ionising budget of the Universe before reionisation was complete. There have been a number of numerical studies trying to quantify their ionising efficiency through the escape fraction $f_ {esc}$. While there is a clear trend that $f_{esc}$ is higher for smaller haloes, there is a large scatter in the distribution of $f_{esc}$ for a single halo mass. We propose that this is due to the intrinsic burstiness of star formation in low mass galaxies. We performed high resolution radiative hydrodynamics simulations with Ramses-RT to model the evolution of three galaxies and their ionising efficiency. We found that the variability of $f_{esc}$ follows that of the star formation rate. We then discuss the consequences of this variability on the observability of such galaxies by JWST.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا