ﻻ يوجد ملخص باللغة العربية
The Microhexcavity Panel ( muHex) is a novel gaseous micropattern particle detector comprised of a dense array of close-packed hexagonal pixels, each operating as an independent detection unit for ionizing radiation. It is a second generation detector derived from plasma panel detectors and microcavity detectors. The muHex is under development to be deployed as a scalable, fast timing (ns) and hermetically sealed gaseous tracking detector with high rate ( > 100 KHz/cm^2 ) capability. The devices reported here were fabricated as 16 x 16 pixel arrays of 2 mm edge-to-edge, 1 mm deep hexagonal cells embedded in a thin, 1.4 mm glass-ceramic wafer. Cell walls are metalized cathodes, connected to high voltage bus lines through conductive vias. Anodes are small, 457 micron diameter metal discs screen printed on the upper substrate. The detectors are filled with an operating gas to near 1 atm and then closed with a shut-off valve. They have been operated in both avalanche mode and gas discharge devices, producing mV to volt level signals with about 1 to 3 ns rise times. Operation in discharge mode is enabled by high impedance quench resistors on the high voltage bus at each pixel site. Results indicate that each individual pixel behaves as an isolated detection unit with high single pixel intrinsic efficiency to both betas from radioactive sources and to cosmic ray muons. Continuous avalanche mode operation over several days at hit rates over 300 KHz/cm^2 with no gas flow have been observed. Measurements of pixel isolation, timing response, efficiency, hit rate and rate stability are reported.
We studied the effect of water vapor on the performance of glass Resistive Plate Chambers (RPCs) in the avalanche mode operation. Controlled and calibrated amount of water vapor was added to the RPC gas mixture that has C$_2$H$_2$F$_4$ as the major c
In the RHIC forward (RHICf) experiment, an operation with pp collisions was performed at $sqrt{s},=,$510 GeV from 24-27 June 2017. The performances, energy and position resolutions, trigger efficiency, stability, and background during the operation,
A Hadron Blind Detector (HBD) has been developed, constructed and successfully operated within the PHENIX detector at RHIC. The HBD is a Cherenkov detector operated with pure CF4. It has a 50 cm long radiator directly coupled in a window- less config
In order to achieve the challenging requirements on the CLIC vertex detector, a range of technology options have been considered in recent years. One prominent idea is the use of active sensors implemented in a commercial high-voltage CMOS process, c
The microhexcavity plasma panel detector is a type of gaseous particle detector consisting of a close-packed array of millimeter-size hexagonal cells. The cells are biased to operate in Geiger mode where each cell functions as an independent detectio