ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of multiple nodal-lines in SmSbTe

137   0   0.0 ( 0 )
 نشر من قبل Madhab Neupane
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Having been a ground for various topological fermionic phases, the family of ZrSiS-type 111 materials has been under experimental and theoretical investigations. Within this family of materials, the subfamily LnSbTe (Ln = lanthanide elements) is gaining interests in recent times as the strong correlation effects and magnetism arising from the 4f electrons of the lanthanides can provide an important platform to study the linking between topology, magnetism, and correlation. In this paper, we report the systematic study of the electronic structure of SmSbTe - a member of the LnSbTe subfamily - by utilizing angle-resolved photoemission spectroscopy in conjunction with first-principles calculations, transport, and magnetic measurements. Our experimental results identify multiple Dirac nodes forming the nodal-lines along the G- X and Z- R directions in the bulk Brillouin zone (BZ) as predicted by our theoretical calculations. A surface Dirac-like state that arises from the square net plane of the Sb atoms is also observed at the X point of the surface BZ. Our study highlights SmSbTe as a promising candidate to understand the topological electronic structure of LnSbTe materials.

قيم البحث

اقرأ أيضاً

Nodal lines, as one-dimensional band degeneracies in momentum space, usually feature a linear energy splitting. Here, we propose the concept of magnetic higher-order nodal lines, which are nodal lines with higher-order energy splitting and realized i n magnetic systems with broken time reversal symmetry. We provide sufficient symmetry conditions for stabilizing magnetic quadratic and cubic nodal lines, based on which concrete lattice models are constructed to demonstrate their existence. Unlike its counterpart in nonmagnetic systems, the magnetic quadratic nodal line can exist as the only band degeneracy at the Fermi level. We show that these nodal lines can be accompanied by torus surface states, which form a surface band that span over the whole surface Brillouin zone. Under symmetry breaking, these magnetic nodal lines can be transformed into a variety of interesting topological states, such as three-dimensional quantum anomalous Hall insulator, multiple linear nodal lines, and magnetic triple-Weyl semimetal. The three-dimensional quantum anomalous Hall insulator features a Hall conductivity $sigma_{xy}$ quantized in unit of $e^2/(hd)$ where $d$ is the lattice constant normal to the $x$-$y$ plane. Our work reveals previously unknown topological states, and offers guidance to search for them in realistic material systems.
We study the electronic structure of the nodal line semimetal ZrSiTe both experimentally and theoretically. We find two different surface states in ZrSiTe - topological drumhead surface states and trivial floating band surface states. Using the spect ra of Wilson loops, we show that a non-trivial Berry phase that exists in a confined region within the Brillouin Zone gives rise to the topological drumhead-type surface states. The $mathbb{Z}_2$ structure of the Berry phase induces a $mathbb{Z}_2$ modular arithmetic of the surface states, allowing surface states deriving from different nodal lines to hybridize and gap out, which can be probed by a set of Wilson loops. Our findings are confirmed by textit{ab-initio} calculations and angle-resolved photoemission experiments, which are in excellent agreement with each other and the topological analysis. This is the first complete characterization of topological surface states in the family of square-net based nodal line semimetals and thus fundamentally increases the understanding of the topological nature of this growing class of topological semimetals.
Topological nodal-line semimetals (NLSs) are unique materials, which harbor one-dimensional line nodes along with the so-called drumhead surface states arising from nearly dispersionless two dimensional surface bands. However, a direct observation of these drumhead surface states in the currently realized NLSs has remained elusive. Here, by using high-resolution angle-resolved photoemission spectroscopy (ARPES) along with parallel first principles calculations, we examine the topological characteristics of SrAs3 and CaAs3. SrAs3 is found to show the presence of a topological nodal-loop, while CaAs3 is found to lie near a topologically trivial phase. Our analysis reveals that the surface projections of the bulk nodal-points in SrAs3 are connected by drumhead surface states. Notably, the topological states in SrAs3 and CaAs3 are well separated from other irrelevant bands in the vicinity of the Fermi level. These compounds thus provide a hydrogen-like simple platform for developing an in-depth understanding of the quantum phase transitions of NLSs.
Initiated by the discovery of topological insulators, topologically non-trivial materials, more specifically topological semimetals and metals have emerged as new frontiers in the field of quantum materials. In this work, we perform a systematic meas urement of EuMg2Bi2, a compound with antiferromagnetic transition temperature at 6.7 K, observed via electrical resistivity, magnetization and specific heat capacity measurements. By utilizing angle-resolved photoemission spectroscopy in concurrence with first-principles calculations, we observe Dirac cones at the corner and the zone center of the Brillouin zone. From our experimental data, multiple Dirac states at G and K points are observed, where the Dirac nodes are located at different energy positions from the Fermi level. Our experimental investigations of detailed electronic structure as well as transport measurements of EuMg2Bi2 suggest that it could potentially provide a platform to study the interplay between topology and magnetism.
106 - D. Takane , K. Nakayama , S. Souma 2017
One of key challenges in current material research is to search for new topological materials with inverted bulk-band structure. In topological insulators, the band inversion caused by strong spin-orbit coupling leads to opening of a band gap in the entire Brillouin zone, whereas an additional crystal symmetry such as point-group and nonsymmorphic symmetries sometimes prohibits the gap opening at/on specific points or line in momentum space, giving rise to topological semimetals. Despite many theoretical predictions of topological insulators/semimetals associated with such crystal symmetries, the experimental realization is still relatively scarce. Here, using angle-resolved photoemission spectroscopy with bulk-sensitive soft x-ray photons, we experimentally demonstrate that hexagonal pnictide CaAgAs belongs to a new family of topological insulators characterized by the inverted band structure and the mirror reflection symmetry of crystal. We have established the bulk valence-band structure in three-dimensional Brillouin zone, and observed the Dirac-like energy band and ring-torus Fermi surface associated with the line node, where bulk valence and conducting bands cross on a line in the momentum space under negligible spin-orbit coupling. Intriguingly, we found that no other bands cross the Fermi level and therefore the low-energy excitations are solely characterized by the Dirac-like band. CaAgAs provides an excellent platform to study the interplay among low-energy electron dynamics, crystal symmetry, and exotic topological properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا