ﻻ يوجد ملخص باللغة العربية
We study the electronic structure of the nodal line semimetal ZrSiTe both experimentally and theoretically. We find two different surface states in ZrSiTe - topological drumhead surface states and trivial floating band surface states. Using the spectra of Wilson loops, we show that a non-trivial Berry phase that exists in a confined region within the Brillouin Zone gives rise to the topological drumhead-type surface states. The $mathbb{Z}_2$ structure of the Berry phase induces a $mathbb{Z}_2$ modular arithmetic of the surface states, allowing surface states deriving from different nodal lines to hybridize and gap out, which can be probed by a set of Wilson loops. Our findings are confirmed by textit{ab-initio} calculations and angle-resolved photoemission experiments, which are in excellent agreement with each other and the topological analysis. This is the first complete characterization of topological surface states in the family of square-net based nodal line semimetals and thus fundamentally increases the understanding of the topological nature of this growing class of topological semimetals.
A topological nodal-line semimetal is a new condensed matter state with one-dimensional bulk nodal lines and two-dimensional drumhead surface bands. Based on first-principles calculations and our effective k . p model, we propose the existence of top
In an ordinary three-dimensional metal the Fermi surface forms a two-dimensional closed sheet separating the filled from the empty states. Topological semimetals, on the other hand, can exhibit protected one-dimensional Fermi lines or zero-dimensiona
Nodal lines, as one-dimensional band degeneracies in momentum space, usually feature a linear energy splitting. Here, we propose the concept of magnetic higher-order nodal lines, which are nodal lines with higher-order energy splitting and realized i
Having been a ground for various topological fermionic phases, the family of ZrSiS-type 111 materials has been under experimental and theoretical investigations. Within this family of materials, the subfamily LnSbTe (Ln = lanthanide elements) is gain
We consider a two-orbital tight-binding model defined on a layered three-dimensional hexagonal lattice to investigate the properties of topological nodal lines and their associated drumhead surface states. We examine these surface states in centrosym