ﻻ يوجد ملخص باللغة العربية
Controlling magnon densities in magnetic materials enables driving spin transport in magnonic devices. We demonstrate the creation of large, out-of-equilibrium magnon densities in a thin-film magnetic insulator via microwave excitation of coherent spin waves and subsequent multi-magnon scattering. We image both the coherent spin waves and the resulting incoherent magnon gas using scanning-probe magnetometry based on electron spins in diamond. We find that the gas extends unidirectionally over hundreds of micrometers from the excitation stripline. Surprisingly, the gas density far exceeds that expected for a boson system following a Bose-Einstein distribution with a maximum value of the chemical potential. We characterize the momentum distribution of the gas by measuring the nanoscale spatial decay of the magnetic stray fields. Our results show that driving coherent spin waves leads to a strong out-of-equilibrium occupation of the spin-wave band, opening new possibilities for controlling spin transport and magnetic dynamics in target directions.
Ferro- and ferrimagnets play host to small-signal, microwave-frequency magnetic excitations called spin waves, the quanta of which are known as magnons. Over the last decade, the field of spin-wave dynamics has contributed much to our understanding o
We show experimentally that the spin current generated by the spin Hall effect drives the magnon gas in a ferromagnet into a quasi-equilibrium state that can be described by the Bose-Einstein statistics. The magnon population function is characterize
We develop a linear-response transport theory of diffusive spin and heat transport by magnons in magnetic insulators with metallic contacts. The magnons are described by a position dependent temperature and chemical potential that are governed by dif
The problem of coupling multiple spin ensembles through cavity photons is revisited by using PyBTM organic radicals and a high-$T_c$ superconducting coplanar resonator. An exceptionally strong coupling is obtained and up to three spin ensembles are s
We theoretically investigate the interlayer dipolar and exchange couplings for an array of metallic magnetic nanowires grown on top of an extended ultrathin yttrium iron garnet film. The calculated interlayer dipolar coupling agrees with observed ant