ﻻ يوجد ملخص باللغة العربية
Ferro- and ferrimagnets play host to small-signal, microwave-frequency magnetic excitations called spin waves, the quanta of which are known as magnons. Over the last decade, the field of spin-wave dynamics has contributed much to our understanding of fundamental magnetism. To date, experiments have focussed overwhelmingly on the study of room-temperature systems within classical limits. Here we demonstrate, for the first time, the excitation and detection of propagating spin waves at the single magnon level. Our results allow us to project that coupling of propagating spin-wave excitations to quantum circuits is achievable, enabling fundamental quantum-level studies of magnon systems and potentially opening doors to novel hybrid quantum measurement and information processing devices.
Controlling magnon densities in magnetic materials enables driving spin transport in magnonic devices. We demonstrate the creation of large, out-of-equilibrium magnon densities in a thin-film magnetic insulator via microwave excitation of coherent sp
Broadband magnetization response of equilateral triangular 1000 nm Permalloy dots has been studied under an in-plane magnetic field, applied parallel (buckle state) and perpendicular (Y state) to the triangles base. Micromagnetic simulations identify
We study spin-wave transport in a microstructured Ni81Fe19 waveguide exhibiting broken translational symmetry. We observe the conversion of a beam profile composed of symmetric spin-wave width modes with odd numbers of antinodes n=1,3,... into a mixe
Conversion of traveling magnons into an electron carried spin current is demonstrated in a time resolved experiment using a spatially separated inductive spin-wave source and an inverse spin Hall effect (ISHE) detector. A short spin-wave packet is ex
We theoretically investigate the interlayer dipolar and exchange couplings for an array of metallic magnetic nanowires grown on top of an extended ultrathin yttrium iron garnet film. The calculated interlayer dipolar coupling agrees with observed ant