ترغب بنشر مسار تعليمي؟ اضغط هنا

Citations or dollars? Early signals of a firms research success

60   0   0.0 ( 0 )
 نشر من قبل Shuqi Xu
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Scientific and technological progress is largely driven by firms in many domains, including artificial intelligence and vaccine development. However, we do not know yet whether the success of firms research activities exhibits dynamic regularities and some degree of predictability. By inspecting the research lifecycles of 7,440 firms, we find that the economic value of a firms early patents is an accurate predictor of various dimensions of a firms future research success. At the same time, a smaller set of future top-performers do not generate early patents of high economic value, but they are detectable via the technological value of their early patents. Importantly, the observed predictability cannot be explained by a cumulative advantage mechanism, and the observed heterogeneity of the firms temporal success patterns markedly differs from patterns previously observed for individuals research careers. Our results uncover the dynamical regularities of the research success of firms, and they could inform managerial strategies as well as policies to promote entrepreneurship and accelerate human progress.



قيم البحث

اقرأ أيضاً

Can we predict top-performing products, services, or businesses by only monitoring the behavior of a small set of individuals? Although most previous studies focused on the predictive power of hub individuals with many social contacts, which sources of customer behavioral data are needed to address this question remains unclear, mostly due to the scarcity of available datasets that simultaneously capture individuals purchasing patterns and social interactions. Here, we address this question in a unique, large-scale dataset that combines individuals credit-card purchasing history with their social and mobility traits across an entire nation. Surprisingly, we find that the purchasing history alone enables the detection of small sets of ``discoverers whose early purchases offer reliable success predictions for the brick-and-mortar stores they visit. In contrast with the assumptions by most existing studies on word-of-mouth processes, the hubs selected by social network centrality are not consistently predictive of success. Our findings show that companies and organizations with access to large-scale purchasing data can detect the discoverers and leverage their behavior to anticipate market trends, without the need for social network data.
In this review, we present the different measures of early warning signals that can indicate the occurrence of critical transitions in complex systems. We start with the mechanisms that trigger critical transitions, how they relate to warning signals and the methods used to detect early warning signals (EWS) for sudden transitions or tipping. We discuss briefly a few applications in real systems in this context, like transitions in ecology, climate and environment, medicine, epidemics, finance and engineering. Towards the end, we mention the issues in detecting EWS in specific applications and our perspective on future trends in this area, especially related to sudden transitions in the dynamics of connected systems on complex networks.
We demonstrate a comprehensive framework that accounts for citation dynamics of scientific papers and for the age distribution of references. We show that citation dynamics of scientific papers is nonlinear and this nonlinearity has far-reaching cons equences, such as diverging citation distributions and runaway papers. We propose a nonlinear stochastic dynamic model of citation dynamics based on link copying/redirection mechanism. The model is fully calibrated by empirical data and does not contain free parameters. This model can be a basis for quantitative probabilistic prediction of citation dynamics of individual papers and of the journal impact factor.
The dynamics of collaboration networks of firms follow a life-cycle of growth and decline. That does not imply they also become less resilient. Instead, declining collaboration networks may still have the ability to mitigate shocks from firms leaving , and to recover from these losses by adapting to new partners. To demonstrate this, we analyze 21.500 R&D collaborations of 14.500 firms in six different industrial sectors over 25 years. We calculate time-dependent probabilities of firms leaving the network and simulate drop-out cascades, to determine the expected dynamics of decline. We then show that deviations from these expectations result from the adaptivity of the network, which mitigates the decline. These deviations can be used as a measure of network resilience.
In this paper we address the question of the size distribution of firms. To this aim, we use the Bloomberg database comprising multinational firms within the years 1995-2003, and analyze the data of the sales and the total assets of the separate fina ncial statement of the Japanese and the US companies, and make a comparison of the size distributions between the Japanese companies and the US companies. We find that (i) the size distribution of the US firms is approximately log-normal, in agreement with Gibrats observation (Gibrat 1931), and in contrast (ii) the size distribution of the Japanese firms is clearly not log-normal, and the upper tail of the size distribution follows the Pareto law. It agree with the predictions of the Simon model (Simon 1955). Key words: the size distribution of firms, the Gibrats law, and the Pareto law
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا