ﻻ يوجد ملخص باللغة العربية
We want to explore the geometrical structure and mutual interactions of the innermost components of the broad line radio galaxy (BLRG) 3C 215, with particular interest in the accretion and ejection mechanisms involving the central supermassive black hole (SMBH). We compare these observational features with the ones of the RQ Seyfert 1 galaxies. Investigating their differences it is possible to understand more about the jet launching mechanisms, and why this phenomenon is efficient only in a small fraction of all the AGNs. Using high quality data from a $sim60$ ks observation with XMM-Newton, we carried out a detailed X-ray spectral analysis of 3C 215 in the broad energy range $0.5-10$ keV. We modeled the spectrum with an absorbed double power-law model for the primary continuum, reprocessed by reflection from ionized and cold neutral material and modified by relativistic blurring. We also compared our results with the ones obtained with previous multi-wavelength observations. We obtain a primary continuum photon index from the corona $Gamma_1=1.97pm0.06$ and evidence of a jet contribution, modeled as a power law with photon index $Gamma_2simeq1.29$. The reflector, possibly the accretion disk and portions of the broad-line region (BLR), is ionized ($logxi=2.31_{-0.27}^{+0.37} mathrm{erg s^{-1} cm}$) and relatively distant from the SMBH ($R_{in}>38 R_g$), where $R_g=GM_{BH}/c^2$ is the gravitational radius. The obscuring torus seems patchy, dust-poor and inefficient, while the jet emission shows a twisted and knotted geometry. We propose three scenarios in order to describe these characteristics: 1.) ADAF state in the inner disk; 2.) Slim accretion disk; 3.) sub-pc SMBH binary system (SMBHB).
We report results on a 40 ks XMM-Newton observation of the Type 2 quasar 3C 234. Optical spectropolarimetric data have demonstrated the presence of a hidden broad-line region in this powerful (M_V <~ -24.2 after reddening and starlight correction) na
We present the first high signal-to-noise XMM-Newton observations of the broad-line radio galaxy 3C 411. After fitting various spectral models, an absorbed double power-law continuum and a blurred relativistic disk reflection model (kdblur) are found
Chandra X-ray observations of the high redshift (z =1.532) radio-loud quasar 3C270.1 in 2008 February show the nucleus to have a power-law spectrum, Gamma = 1.66 +/- 0.08, typical of a radio-loud quasar, and a marginally-detected Fe Kalpha emission l
We present radio, optical, near-infrared and spectroscopic observations of the source B0827+525. We consider this source as the best candidate from the Cosmic Lens All-Sky Survey (CLASS) for a `dark lens system or binary radio-loud quasar. The system
The relativistic jets created by some active galactic nuclei are important agents of AGN feedback. In spite of this, our understanding of what produces these jets is still incomplete. X-ray observations, which can probe the processes operating in the