ترغب بنشر مسار تعليمي؟ اضغط هنا

DIS2021 Workshop Proceedings: Backward-Angle (u-Channel) Meson Production from JLab 12 GeV Hall C to EIC

80   0   0.0 ( 0 )
 نشر من قبل Wenliang Li
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف W. B. Li




اسأل ChatGPT حول البحث

The recent exclusive backward-angle electroproduction of omega from Jefferson Lab Hall C electron-proton fixed-target scattering experiments above the resonance region hints at a new domain of applicability of QCD factorization in a unique u-channel kinematics regime. Thanks to this effort, the interest in studying nucleon structure through u-channel meson production observables has grown significantly. In the fixed target configuration, the u-channel meson electroproduction observables feature a unique interaction picture: the target proton absorbs nearly all momentum induced by virtual photons and recoils forward, while the produced mesons (such as omega or pions) are left behind almost at rest near the target station. In this presentation, We provide a summary of the key observations of the existing u-channel meson production results, update-to-date theory insights, and a path to further exploration from JLab 12 GeV Hall C program to the future Electron-Ion Colliders.

قيم البحث

اقرأ أيضاً

190 - W.B. Li , G.M. Huber , H.P. Blok 2019
Backward-angle meson electroproduction above the resonance region, which was previously ignored, is anticipated to offer unique access to the three quark plus sea component of the nucleon wave function. In this letter, we present the first complete s eparation of the four electromagnetic structure functions above the resonance region in exclusive omega electroproduction off the proton, e + p -> e + p + omega, at central Q^2 values of 1.60, 2.45 GeV^2 , at W = 2.21 GeV. The results of our pioneering -u ~ -u min study demonstrate the existence of a unanticipated backward-angle cross section peak and the feasibility of full L/T/LT/TT separations in this never explored kinematic territory. At Q^2 =2.45 GeV^2 , the observed dominance of sigma_T over sigma_L, is qualitatively consistent with the collinear QCD description in the near-backward regime, in which the scattering amplitude factorizes into a hard subprocess amplitude and baryon to meson transition distribution amplitudes (TDAs): universal non-perturbative objects only accessible through backward angle kinematics.
The mini-proceedings of the Light Meson Dynamics Workshop held in Mainz from February 10th to 12th, 2014, are presented. The web page of the conference, which contains all talks, can be found at https://indico.cern.ch/event/287442/overview .
79 - M. Sumihama , D.S. Ahn , J.K. Ahn 2009
Differential cross sections for eta photoproduction off protons have been measured at E_gamma = 1.6 - 2.4 GeV in the backward direction. A bump structure has been observed above 2.0 GeV in the total energy. No such bump is observed in cross sections for eta, omega and pi0 photoproductions. It is inferred that this unique structure in eta photoproduction is due to a baryon resonance with a large portion of ss-bar strongly coupled to the etaN channel.
New data on proton and pion production in p+C interactions from the CERN PS and SPS accelerators are used in conjunction with other available data sets to perform a comprehensive survey of backward hadronic cross sections. This survey covers the comp lete backward hemisphere in the range of lab angles from 10 to 180 degrees, from 0.2 to 1.4 GeV/c in lab momentum and from 1 to 400 GeV/c in projectile momentum. Using the constraints of continuity and smoothness of the angular, momentum and energy dependences a consistent description of the inclusive cross sections is established which allows the control of the internal consistency of the nineteen available data sets.
Backward angle (u-channel) scattering provides complementary information for studies of hadron spectroscopy and structure, but has been less comprehensively studied than the corresponding forward angle case. As a result, the physics of u-channel scat tering poses a range of new experimental and theoretical opportunities and questions. We summarize recent progress in measuring and understanding high energy reactions with baryon charge exchange in the u-channel, as discussed in the first backward angle (u-channel) Physics Workshop. In particular, we discuss backward angle measurements and their theoretical description via both hadronic models and the collinear factorization approach, and discuss planned future measurements of u-channel physics. Finally, we propose outstanding questions and challenges for u-channel physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا