ﻻ يوجد ملخص باللغة العربية
Backward-angle meson electroproduction above the resonance region, which was previously ignored, is anticipated to offer unique access to the three quark plus sea component of the nucleon wave function. In this letter, we present the first complete separation of the four electromagnetic structure functions above the resonance region in exclusive omega electroproduction off the proton, e + p -> e + p + omega, at central Q^2 values of 1.60, 2.45 GeV^2 , at W = 2.21 GeV. The results of our pioneering -u ~ -u min study demonstrate the existence of a unanticipated backward-angle cross section peak and the feasibility of full L/T/LT/TT separations in this never explored kinematic territory. At Q^2 =2.45 GeV^2 , the observed dominance of sigma_T over sigma_L, is qualitatively consistent with the collinear QCD description in the near-backward regime, in which the scattering amplitude factorizes into a hard subprocess amplitude and baryon to meson transition distribution amplitudes (TDAs): universal non-perturbative objects only accessible through backward angle kinematics.
We report on the first measurement of cross sections for exclusive deeply virtual pion electroproduction off the proton, $e p to e^prime n pi^+$, above the resonance region at backward pion center-of-mass angles. The $varphi^*_{pi}$-dependent cross s
The recent exclusive backward-angle electroproduction of omega from Jefferson Lab Hall C electron-proton fixed-target scattering experiments above the resonance region hints at a new domain of applicability of QCD factorization in a unique u-channel
Hard exclusive electroproduction of $omega$ mesons is studied with the HERMES spectrometer at the DESY laboratory by scattering 27.6 GeV positron and electron beams off a transversely polarized hydrogen target. The amplitudes of five azimuthal modula
Backward angle (u-channel) scattering provides complementary information for studies of hadron spectroscopy and structure, but has been less comprehensively studied than the corresponding forward angle case. As a result, the physics of u-channel scat
Studies of the nucleon resonance electroexcitation amplitudes in a wide range of photon virtualities offer unique information on many facets of strong QCD behind the generation of all prominent excited nucleon states. Advances in the evaluation of re