ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal control of a 2D diffusion-advection process with a team of mobile actuators under jointly optimal guidance

90   0   0.0 ( 0 )
 نشر من قبل Sheng Cheng
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper describes an optimization framework to control a distributed parameter system (DPS) using a team of mobile actuators. The framework simultaneously seeks optimal control of the DPS and optimal guidance of the mobile actuators such that a cost function associated with both the DPS and the mobile actuators is minimized subject to the dynamics of each. The cost incurred from controlling the DPS is linear-quadratic, which is transformed into an equivalent form as a quadratic term associated with an operator-valued Riccati equation. This equivalent form reduces the problem to seeking for guidance only because the optimal control can be recovered once the optimal guidance is obtained. We establish conditions for the existence of a solution to the proposed problem. Since computing an optimal solution requires approximation, we also establish the conditions for convergence to the exact optimal solution of the approximate optimal solution. That is, when evaluating these two solutions by the original cost function, the difference becomes arbitrarily small as the approximation gets finer. Two numerical examples demonstrate the performance of the optimal control and guidance obtained from the proposed approach.



قيم البحث

اقرأ أيضاً

In this paper, we investigate a sparse optimal control of continuous-time stochastic systems. We adopt the dynamic programming approach and analyze the optimal control via the value function. Due to the non-smoothness of the $L^0$ cost functional, in general, the value function is not differentiable in the domain. Then, we characterize the value function as a viscosity solution to the associated Hamilton-Jacobi-Bellman (HJB) equation. Based on the result, we derive a necessary and sufficient condition for the $L^0$ optimality, which immediately gives the optimal feedback map. Especially for control-affine systems, we consider the relationship with $L^1$ optimal control problem and show an equivalence theorem.
205 - Yutao Tang 2020
This paper studies an optimal consensus problem for a group of heterogeneous high-order agents with unknown control directions. Compared with existing consensus results, the consensus point is further required to an optimal solution to some distribut ed optimization problem. To solve this problem, we first augment each agent with an optimal signal generator to reproduce the global optimal point of the given distributed optimization problem, and then complete the global optimal consensus design by developing some adaptive tracking controllers for these augmented agents. Moreover, we present an extension when only real-time gradients are available. The trajectories of all agents in both cases are shown to be well-defined and achieve the expected consensus on the optimal point. Two numerical examples are given to verify the efficacy of our algorithms.
110 - Feng Huang , Ming Cao , 2021
In stochastic dynamic environments, team stochastic games have emerged as a versatile paradigm for studying sequential decision-making problems of fully cooperative multi-agent systems. However, the optimality of the derived policies is usually sensi tive to the model parameters, which are typically unknown and required to be estimated from noisy data in practice. To mitigate the sensitivity of the optimal policy to these uncertain parameters, in this paper, we propose a model of robust team stochastic games, where players utilize a robust optimization approach to make decisions. This model extends team stochastic games to the scenario of incomplete information and meanwhile provides an alternative solution concept of robust team optimality. To seek such a solution, we develop a learning algorithm in the form of a Gauss-Seidel modified policy iteration and prove its convergence. This algorithm, compared with robust dynamic programming, not only possesses a faster convergence rate, but also allows for using approximation calculations to alleviate the curse of dimensionality. Moreover, some numerical simulations are presented to demonstrate the effectiveness of the algorithm by generalizing the game model of social dilemmas to sequential robust scenarios.
We address the issue of safe optimal path planning under parametric uncertainties using a novel regularizer that allows trading off optimality with safety. The proposed regularizer leverages the notion that collisions may be modeled as constraint vio lations in an optimal control setting in order to produce open-loop trajectories with reduced risk of collisions. The risk of constraint violation is evaluated using a state-dependent relevance function and first-order variations in the constraint function with respect to parametric variations. The approach is generic and can be adapted to any optimal control formulation that deals with constraints under parametric uncertainty. Simulations using a holonomic robot avoiding multiple dynamic obstacles with uncertain velocities are used to demonstrate the effectiveness of the proposed approach. Finally, we introduce the car vs. train problem to emphasize the dependence of the resultant risk aversion behavior on the form of the constraint function used to derive the regularizer.
In this effort, a novel operator theoretic framework is developed for data-driven solution of optimal control problems. The developed methods focus on the use of trajectories (i.e., time-series) as the fundamental unit of data for the resolution of o ptimal control problems in dynamical systems. Trajectory information in the dynamical systems is embedded in a reproducing kernel Hilbert space (RKHS) through what are called occupation kernels. The occupation kernels are tied to the dynamics of the system through the densely defined Liouville operator. The pairing of Liouville operators and occupation kernels allows for lifting of nonlinear finite-dimensional optimal control problems into the space of infinite-dimensional linear programs over RKHSs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا