ﻻ يوجد ملخص باللغة العربية
This paper focuses on the combined radar and communications problem and conducts a thorough analytical investigation on the effect of phase and frequency change on the communication and sensing functionality. First, we consider the classical stepped frequency radar waveform and modulate data using M-ary phase shift keying (MPSK). Two important analytical tools in radar waveform design, namely the ambiguity function (AF) and the Fisher information matrix (FIM) are derived, based on which, we make the important conclusion that MPSK modulation has a negligible effect on radar local accuracy. Next, we extend the analysis to incorporate frequency permutations and propose a new signalling scheme in which the mapping between incoming data and waveforms is performed based on an efficient combinatorial transform called the Lehmer code. We also provide an efficient communications receiver based on the Hungarian algorithm. From the communications perspective, we consider the optimal maximum likelihood (ML) detector and derive the union bound and nearest neighbour approximation on the block error probability. From the radar sensing perspective, we discuss the broader structure of the waveform based on the AF derivation and quantify the radar local accuracy based on the FIM.
A recent unlabeled sampling result by Unnikrishnan, Haghighatshoar and Vetterli states that with probability one over iid Gaussian matrices $A$, any $x$ can be uniquely recovered from an unknown permutation of $y = A x$ as soon as $A$ has at least tw
Enabled by the advancement in radio frequency technologies, the convergence of radar and communication systems becomes increasingly promising and is envisioned as a key feature of future 6G networks. Recently, the frequency-hopping (FH) MIMO radar is
In this paper, we focus on intelligent reflecting surface (IRS) assisted multi-antenna communications with transceiver hardware impairments encountered in practice. In particular, we aim to maximize the received signal-to-noise ratio (SNR) taking int
Cell-free (CF) massive multiple-input multiple-output (MIMO) is a promising solution to provide uniform good performance for unmanned aerial vehicle (UAV) communications. In this paper, we propose the UAV communication with wireless power transfer (W
In the field of radar parameter estimation, Cramer-Rao bound (CRB) is a commonly used theoretical limit. However, CRB is only achievable under high signal-to-noise (SNR) and does not adequately characterize performance in low and medium SNRs. In this