ﻻ يوجد ملخص باللغة العربية
Enabled by the advancement in radio frequency technologies, the convergence of radar and communication systems becomes increasingly promising and is envisioned as a key feature of future 6G networks. Recently, the frequency-hopping (FH) MIMO radar is introduced to underlay dual-function radar-communication (DFRC) systems. Superior to many previous radar-centric DFRC designs, the symbol rate of FH-MIMO radar-based DFRC (FH-MIMO DFRC) can exceed the radar pulse repetition frequency. However, many practical issues, particularly those regarding effective data communications, are unexplored/unsolved. To promote the awareness and general understanding of the novel DFRC, this article is devoted to providing a timely introduction of FH-MIMO DFRC. We comprehensively review many essential aspects of the novel DFRC: channel/signal models, signaling strategies, modulation/demodulation processing and channel estimation methods, to name a few. We also highlight major remaining issues in FH-MIMO DFRC and suggest potential solutions to shed light on future research works.
Frequency-hopping (FH) MIMO radar-based dual-function radar communication (FH-MIMO DFRC) enables communication symbol rate to exceed radar pulse repetition frequency, which requires accurate estimations of timing offset and channel parameters. The es
Dual-function radar-communication (DFRC) based on frequency hopping (FH) MIMO radar (FH-MIMO DFRC) achieves symbol rate much higher than radar pulse repetition frequency. Such DFRC, however, is prone to eavesdropping due to the spatially uniform illu
Inter-carrier interference (ICI) poses a significant challenge for OFDM joint radar-communications (JRC) systems in high-mobility scenarios. In this paper, we propose a novel ICI-aware sensing algorithm for MIMO-OFDM JRC systems to detect the presenc
In this paper, we consider the design of a multiple-input multiple-output (MIMO) transmitter which simultaneously functions as a MIMO radar and a base station for downlink multiuser communications. In addition to a power constraint, we require the co
Due to spectrum scarcity, the coexistence of radar and wireless communication has gained substantial research interest recently. Among many scenarios, the heterogeneouslydistributed joint radar-communication system is promising due to its flexibility