ترغب بنشر مسار تعليمي؟ اضغط هنا

HST PanCET Program: A Complete Near-UV to Infrared Transmission Spectrum for the Hot Jupiter WASP-79b

104   0   0.0 ( 0 )
 نشر من قبل Alexander Rathcke
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new optical transmission spectrum of the hot Jupiter WASP-79b. We observed three transits with the STIS instrument mounted on HST, spanning 0.3 - 1.0 um. Combining these transits with previous observations, we construct a complete 0.3 - 5.0 um transmission spectrum of WASP-79b. Both HST and ground-based observations show decreasing transit depths towards blue wavelengths, contrary to expectations from Rayleigh scattering or hazes. We infer atmospheric and stellar properties from the full near-UV to infrared transmission spectrum of WASP-79b using three independent retrieval codes, all of which yield consistent results. Our retrievals confirm previous detections of H$_{2}$O (at 4.0$sigma$ confidence), while providing moderate evidence of H$^{-}$ bound-free opacity (3.3$sigma$) and strong evidence of stellar contamination from unocculted faculae (4.7$sigma$). The retrieved H$_{2}$O abundance ($sim$ 1$%$) suggests a super-stellar atmospheric metallicity, though stellar or sub-stellar abundances remain consistent with present observations (O/H = 0.3 - 34$times$ stellar). All three retrieval codes obtain a precise H$^{-}$ abundance constraint: log(X$_{rm{H^{-}}}$) $approx$ -8.0 $pm$ 0.7. The potential presence of H$^{-}$ suggests that JWST observations may be sensitive to ionic chemistry in the atmosphere of WASP-79b. The inferred faculae are $sim$ 500 K hotter than the stellar photosphere, covering $sim$ 15$%$ of the stellar surface. Our analysis underscores the importance of observing UV - optical transmission spectra in order to disentangle the influence of unocculted stellar heterogeneities from planetary transmission spectra.



قيم البحث

اقرأ أيضاً

The hot Jupiter WASP-79b is a prime target for exoplanet atmospheric characterization both now and in the future. Here we present a thermal emission spectrum of WASP-79b, obtained via Hubble Space Telescope Wide Field Camera 3 G141 observations as pa rt of the PanCET program. Given the temporal coverage of WASP-79bs secondary eclipse, we consider two scenarios: a fixed mid-eclipse time based on the expected occurrence time and a mid-eclipse time as a free parameter. In both scenarios, we can measure thermal emission from WASP-79b from 1.1-1.7 $mu$m at 2.4$sigma$ confidence consistent with a 1900 K brightness temperature for the planet. We combine our observations with Spitzer dayside photometry (3.6 and 4.5 $mu$m) and compare these observations to a grid of atmospheric forward models. Given the precision of our measurements, WASP-79bs infrared emission spectrum is consistent with theoretical spectra assuming equilibrium chemistry, enhanced abundances of H-, VO, or FeH, as well as clouds. The best match equilibrium model suggests WASP-79bs dayside has a solar metallicity and carbon-to-oxygen ratio, alongside a recirculation factor of 0.75. Models including significant H- opacity provide the best match to WASP-79bs emission spectrum near 1.58 $mu$m. However, models featuring high-temperature cloud species - formed via vigorous vertical mixing and low sedimentation efficiencies - with little day-to-night energy transport also match WASP-79bs emission spectrum. Given the broad range of equilibrium chemistry, disequilibrium chemistry, and cloudy atmospheric models consistent with our observations of WASP-79bs dayside emission, further observations will be necessary to constrain WASP-79bs dayside atmospheric properties.
We present a 0.3-5 micron transmission spectrum of the hot Jupiter HAT-P-32Ab observed with the Space Telescope Imaging Spectrograph (STIS) and Wide Field Camera 3 (WFC3) instruments mounted on the Hubble Space Telescope, combined with Spitzer Infrar ed Array Camera (IRAC) photometry. The spectrum is composed of 51 spectrophotometric bins with widths ranging between 150 and 400 AA, measured to a median precision of 215 ppm. Comparisons of the observed transmission spectrum to a grid of 1D radiative-convective equilibrium models indicate the presence of clouds/hazes, consistent with previous transit observations and secondary eclipse measurements. To provide more robust constraints on the planets atmospheric properties, we perform the first full optical to infrared retrieval analysis for this planet. The retrieved spectrum is consistent with a limb temperature of 1248$pm$92 K, a thick cloud deck, enhanced Rayleigh scattering, and $sim$10x solar H2O abundance. We find log($Z/Z_{odot}$) = 2.41$_{-0.07}^{+0.06}$, in agreement with the mass-metallicity relation derived for the Solar System.
We present HST near-ultraviolet (NUV) transits of the hot Jupiter WASP-121b, acquired as part of the PanCET program. Time series spectra during two transit events were used to measure the transmission spectra between 2280 and 3070 Angstroms at a reso lution of 30,000. Using HST data from 61 STIS visits, we show that data from HSTs Pointing Control System can be used to decorrelate the instrument systematic errors (Jitter Decorrelation), which we used to fit the WASP-121b light curves. The NUV spectrum show very strong absorption features, with the NUV white light curve found to be larger than the average optical and near-infrared value at 6-$sigma$ confidence. We identify and spectrally resolve absorption from the Mg ii doublet in the planetary exosphere at a 5.9-$sigma$ confidence level. The Mg ii doublet is observed to reach altitudes of $R_{pl}/R_{star}=0.284pm0.037$ for the 2796 Angstrom line and $0.242pm0.0431$ in the 2804 Angstrom line, which exceeds the Roche lobe size as viewed in transit geometry ($R_{rm eqRL}/R_{star}$ = 0.158). We also detect and resolve strong features of the Fe ii UV1 and UV2 multiplets, and observe the lines reaching altitudes of $R_{pl}/R_{star}approx0.3$. At these high altitudes, the atmospheric Mg ii and Fe ii gas is not gravitationally bound to the planet, and these ionized species may be hydrodynamically escaping or could be magnetically confined. Refractory Mg and Fe atoms at high altitudes also indicates that these species are not trapped into condensate clouds at depth, which places constraints on the deep interior temperature.
We present results from the first observations of the Hubble Space Telescope (HST) Panchromatic Comparative Exoplanet Treasury (PanCET) program for WASP-101b, a highly inflated hot Jupiter and one of the community targets proposed for the James Webb Space Telescope (JWST) Early Release Science (ERS) program. From a single HST Wide Field Camera 3 (WFC3) observation, we find that the near-infrared transmission spectrum of WASP-101b contains no significant H$_2$O absorption features and we rule out a clear atmosphere at 13{sigma}. Therefore, WASP-101b is not an optimum target for a JWST ERS program aimed at observing strong molecular transmission features. We compare WASP-101b to the well studied and nearly identical hot Jupiter WASP-31b. These twin planets show similar temperature-pressure profiles and atmospheric features in the near-infrared. We suggest exoplanets in the same parameter space as WASP-101b and WASP-31b will also exhibit cloudy transmission spectral features. For future HST exoplanet studies, our analysis also suggests that a lower count limit needs to be exceeded per pixel on the detector in order to avoid unwanted instrumental systematics.
We measure the transmission spectrum of WASP-19b from 3 transits using low-resolution optical spectroscopy from the HST Space Telescope Imaging Spectrograph (STIS). The STIS spectra cover a wavelength range of 0.29-1.03 microns with resolving power R =500. The optical data are combined with archival near-IR data from the HST Wide Field Camera 3 (WFC3) G141 grism, covering the wavelength range 1.087-1.687 micron, with resolving power R=130. We obtain the transmission spectrum from 0.53-1.687 microns with S/N levels between 3000 and 11,000 in 0.1 micron bins. WASP-19 is a very active star, with optical stellar flux varying by a few per cent over time. We correct the transit light curves for the effects of stellar activity using ground-based activity monitoring with the Cerro Tololo Inter-American Observatory (CTIO). While we were not able to construct a transmission spectrum using the blue optical data due to the presence of large occulted star spots, we were able to use the spot crossings to help constrain the mean stellar spot temperature. To search for predicted features in the hot-Jupiter atmosphere, we also define spectral indices for differential radius measurements to specifically search for the presence of TiO and alkali line features. Our measurements rule out TiO features predicted for a planet of WASP-19bs equilibrium temperature (2050 K) in the transmission spectrum at the 2.7-2.9 sigma confidence level, depending on atmospheric model formalism. The WFC3 transmission spectrum shows strong absorption features due to the presence of H2O, which is detected at the 4 sigma confidence level between 1.1 and 1.4 microns. The results indicate that WASP-19b is a planet with no or low levels of TiO and without a high C/O ratio. The lack of observable TiO features are possibly due to rainout, breakdown from stellar activity or the presence of other absorbers in the optical.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا