ﻻ يوجد ملخص باللغة العربية
Understanding the differences between photon-induced and plasmon-induced hot electrons is essential for the construction of devices for plasmonic energy conversion. The mechanism of the plasmonic enhancement in photochemistry, photocatalysis, and light-harvesting and especially the role of hot carriers is still heavily discussed. The question remains, if plasmon-induced and photon-induced hot carriers are fundamentally different, or if plasmonic enhancement is only an effect of field concentration producing these carriers in greater numbers. For the bulk plasmon resonance, a fundamental difference is known, yet for the technologically important surface plasmons this is far from being settled. The direct imaging of surface plasmon-induced hot carriers could provide essential insight, but the separation of the influence of driving laser, field-enhancement, and fundamental plasmon decay has proven to be difficult. Here, we present an approach using a two-color femtosecond pump-probe scheme in time-resolved 2-photon-photoemission (tr-2PPE), supported by a theoretical analysis of the light and plasmon energy flow. We separate the energy and momentum distribution of the plasmon-induced hot electrons from the one of photoexcited electrons by following the spatial evolution of photoemitted electrons with energy-resolved Photoemission Electron Microscopy (PEEM) and Momentum Microscopy during the propagation of a Surface Plasmon Polariton (SPP) pulse along a gold surface. With this scheme, we realize a direct experimental access to plasmon-induced hot electrons. We find a plasmonic enhancement towards high excitation energies and small in-plane momenta, which suggests a fundamentally different mechanism of hot electron generation, as previously unknown for surface plasmons.
In this paper the formation mechanisms of the femtosecond laser-induced periodic surface structures (LIPSS) are discussed. One of the most frequently-used theories explains the structures by interference between the incident laser beam and surface pl
Harnessing hot electrons and holes resulting from the decay of localized surface plasmons in nanomaterials has recently led to new devices for photovoltaics, photocatalysis and optoelectronics. Properties of hot carriers are highly tunable and in thi
When the excitation of carriers in real space is focused down to the nanometer scale, the carrier system can no longer be viewed as homogeneous and ultrafast transport of the excited carrier wave packets occurs. In state-of-the-art semiconductor stru
The existence of Weyl nodes in the momentum space is a hallmark of a Weyl semimetal (WSM). A WSM can be confirmed by observing its Fermi arcs with separated Weyl nodes. In this paper, we study the spin- orbit interaction of light on the surface of WS
We investigate hot carrier propagation across graphene using an electrical nonlocal injection/detection method. The device consists of a monolayer graphene flake contacted by multiple metal leads. Using two remote leads for electrical heating, we gen