ترغب بنشر مسار تعليمي؟ اضغط هنا

Safest Nearby Neighbor Queries in Road Networks (Full Version)

427   0   0.0 ( 0 )
 نشر من قبل Muhammad Cheema
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Traditional route planning and $k$ nearest neighbors queries only consider distance or travel time and ignore road safety altogether. However, many travellers prefer to avoid risky or unpleasant road conditions such as roads with high crime rates (e.g., robberies, kidnapping, riots etc.) and bumpy roads. To facilitate safe travel, we introduce a novel query for road networks called the $k$ safest nearby neighbors ($k$SNN) query. Given a query location $v_l$, a distance constraint $d_c$ and a point of interest $p_i$, we define the safest path from $v_l$ to $p_i$ as the path with the highest path safety score among all the paths from $v_l$ to $p_i$ with length less than $d_c$. The path safety score is computed considering the road safety of each road segment on the path. Given a query location $v_l$, a distance constraint $d_c$ and a set of POIs $P$, a $k$SNN query returns $k$ POIs with the $k$ highest path safety scores in $P$ along with their respective safest paths from the query location. We develop two novel indexing structures called $Ct$-tree and a safety score based Voronoi diagram (SNVD). We propose two efficient query processing algorithms each exploiting one of the proposed indexes to effectively refine the search space using the properties of the index. Our extensive experimental study on real datasets demonstrates that our solution is on average an order of magnitude faster than the baselines.



قيم البحث

اقرأ أيضاً

Computing the shortest path between two given locations in a road network is an important problem that finds applications in various map services and commercial navigation products. The state-of-the-art solutions for the problem can be divided into t wo categories: spatial-coherence-based methods and vertex-importance-based approaches. The two categories of techniques, however, have not been compared systematically under the same experimental framework, as they were developed from two independent lines of research that do not refer to each other. This renders it difficult for a practitioner to decide which technique should be adopted for a specific application. Furthermore, the experimental evaluation of the existing techniques, as presented in previous work, falls short in several aspects. Some methods were tested only on small road networks with up to one hundred thousand vertices; some approaches were evaluated using distance queries (instead of shortest path queries), namely, queries that ask only for the length of the shortest path; a state-of-the-art technique was examined based on a faulty implementation that led to incorrect query results. To address the above issues, this paper presents a comprehensive comparison of the most advanced spatial-coherence-based and vertex-importance-based approaches. Using a variety of real road networks with up to twenty million vertices, we evaluated each technique in terms of its preprocessing time, space consumption, and query efficiency (for both shortest path and distance queries). Our experimental results reveal the characteristics of different techniques, based on which we provide guidelines on selecting appropriate methods for various scenarios.
Reachability query is a fundamental problem on graphs, which has been extensively studied in academia and industry. Since graphs are subject to frequent updates in many applications, it is essential to support efficient graph updates while offering g ood performance in reachability queries. Existing solutions compress the original graph with the Directed Acyclic Graph (DAG) and propose efficient query processing and index update techniques. However, they focus on optimizing the scenarios where the Strong Connected Components(SCCs) remain unchanged and have overlooked the prohibitively high cost of the DAG maintenance when SCCs are updated. In this paper, we propose DBL, an efficient DAG-free index to support the reachability query on dynamic graphs with insertion-only updates. DBL builds on two complementary indexes: Dynamic Landmark (DL) label and Bidirectional Leaf (BL) label. The former leverages landmark nodes to quickly determine reachable pairs whereas the latter prunes unreachable pairs by indexing the leaf nodes in the graph. We evaluate DBL against the state-of-the-art approaches on dynamic reachability index with extensive experiments on real-world datasets. The results have demonstrated that DBL achieves orders of magnitude speedup in terms of index update, while still producing competitive query efficiency.
Bitvector filtering is an important query processing technique that can significantly reduce the cost of execution, especially for complex decision support queries with multiple joins. Despite its wide application, however, its implication to query o ptimization is not well understood. In this work, we study how bitvector filters impact query optimization. We show that incorporating bitvector filters into query optimization straightforwardly can increase the plan space complexity by an exponential factor in the number of relations in the query. We analyze the plans with bitvector filters for star and snowflake queries in the plan space of right deep trees without cross products. Surprisingly, with some simplifying assumptions, we prove that, the plan of the minimal cost with bitvector filters can be found from a linear number of plans in the number of relations in the query. This greatly reduces the plan space complexity for such queries from exponential to linear. Motivated by our analysis, we propose an algorithm that accounts for the impact of bitvector filters in query optimization. Our algorithm optimizes the join order for an arbitrary decision support query by choosing from a linear number of candidate plans in the number of relations in the query. We implement our algorithm in Microsoft SQL Server as a transformation rule. Our evaluation on both industry standard benchmarks and customer workload shows that, compared with the original Microsoft SQL Server, our technique reduces the total CPU execution time by 22%-64% for the workloads, with up to two orders of magnitude reduction in CPU execution time for individual queries.
Given a stream of food orders and available delivery vehicles, how should orders be assigned to vehicles so that the delivery time is minimized? Several decisions have to be made: (1) assignment of orders to vehicles, (2) grouping orders into batches to cope with limited vehicle availability, and (3) adapting to dynamic positions of delivery vehicles. We show that the minimization problem is not only NP-hard but inapproximable in polynomial time. To mitigate this computational bottleneck, we develop an algorithm called FoodMatch, which maps the vehicle assignment problem to that of minimum weight perfect matching on a bipartite graph. To further reduce the quadratic construction cost of the bipartite graph, we deploy best-first search to only compute a subgraph that is highly likely to contain the minimum matching. The solution quality is further enhanced by reducing batching to a graph clustering problem and anticipating dynamic positions of vehicles through angular distance. Extensive experiments on food-delivery data from large metropolitan cities establish that FoodMatch is substantially better than baseline strategies on a number of metrics, while being efficient enough to handle real-world workloads.
80 - Mengxuan Zhang , Lei Li , Wen Hua 2019
Finding the shortest paths in road network is an important query in our life nowadays, and various index structures are constructed to speed up the query answering. However, these indexes can hardly work in real-life scenario because the traffic cond ition changes dynamically, which makes the pathfinding slower than in the static environment. In order to speed up path query answering in the dynamic road network, we propose a framework to support these indexes. Firstly, we view the dynamic graph as a series of static snapshots. After that, we propose two kinds of methods to select the typical snapshots. The first kind is time-based and it only considers the temporal information. The second category is the graph representation-based, which considers more insights: edge-based that captures the road continuity, and vertex-based that reflects the region traffic fluctuation. Finally, we propose the snapshot matching to find the most similar typical snapshot for the current traffic condition and use its index to answer the query directly. Extensive experiments on real-life road network and traffic conditions validate the effectiveness of our approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا