ﻻ يوجد ملخص باللغة العربية
Reachability query is a fundamental problem on graphs, which has been extensively studied in academia and industry. Since graphs are subject to frequent updates in many applications, it is essential to support efficient graph updates while offering good performance in reachability queries. Existing solutions compress the original graph with the Directed Acyclic Graph (DAG) and propose efficient query processing and index update techniques. However, they focus on optimizing the scenarios where the Strong Connected Components(SCCs) remain unchanged and have overlooked the prohibitively high cost of the DAG maintenance when SCCs are updated. In this paper, we propose DBL, an efficient DAG-free index to support the reachability query on dynamic graphs with insertion-only updates. DBL builds on two complementary indexes: Dynamic Landmark (DL) label and Bidirectional Leaf (BL) label. The former leverages landmark nodes to quickly determine reachable pairs whereas the latter prunes unreachable pairs by indexing the leaf nodes in the graph. We evaluate DBL against the state-of-the-art approaches on dynamic reachability index with extensive experiments on real-world datasets. The results have demonstrated that DBL achieves orders of magnitude speedup in terms of index update, while still producing competitive query efficiency.
In the real world a graph is often fragmented and distributed across different sites. This highlights the need for evaluating queries on distributed graphs. This paper proposes distributed evaluation algorithms for three classes of queries: reachabil
A temporal graph is a graph in which vertices communicate with each other at specific time, e.g., $A$ calls $B$ at 11 a.m. and talks for 7 minutes, which is modeled by an edge from $A$ to $B$ with starting time 11 a.m. and duration 7 mins. Temporal g
Graphs are widely used to model data in many application domains. Thanks to the wide spread use of GPS-enabled devices, many applications assign a spatial attribute to graph vertices (e.g., geo-tagged social media). Users may issue a Reachability Que
Large-scale graph-structured data arising from social networks, databases, knowledge bases, web graphs, etc. is now available for analysis and mining. Graph-mining often involves relationship queries, which seek a ranked list of interesting interconn
Traditional route planning and $k$ nearest neighbors queries only consider distance or travel time and ignore road safety altogether. However, many travellers prefer to avoid risky or unpleasant road conditions such as roads with high crime rates (e.