ﻻ يوجد ملخص باللغة العربية
We provide a rigorous lattice approximation of conformal field theories given in terms of lattice fermions in 1+1-dimensions, focussing on free fermion models and Wess-Zumino-Witten models. To this end, we utilize a recently introduced operator-algebraic framework for Wilson-Kadanoff renormalization. In this setting, we prove the convergence of the approximation of the Virasoro generators by the Koo-Saleur formula. From this, we deduce the convergence of lattice approximations of conformal correlation functions to their continuum limit. In addition, we show how these results lead to explicit error estimates pertaining to the quantum simulation of conformal field theories.
In generic conformal field theories with $W_3$ symmetry, we identify a primary field $sigma$ with rational Kac indices, which produces the full $mathbb{Z}_3$ charged and neutral sectors by the fusion processes $sigma times sigma$ and $sigma times sig
Linking numbers appear in local quantum field theory in the presence of tensor fields, which are closed two-forms on Minkowski space. Given any pair of such fields, it is shown that the commutator of the corresponding intrinsic (gauge invariant) vect
In this paper we discuss two constructions of an effective field theory starting from a local interaction functional. One relies on the well-established graphical combinatorics of the BPHZ algorithm to renormalize divergent Feynman amplitudes. The ot
We review recent progress in operator algebraic approach to conformal quantum field theory. Our emphasis is on use of representation theory in classification theory. This is based on a series of joint works with R. Longo.
The idea of summing over all intermediate states that is central for implementing locality in quantum systems can be realized by coend constructions. In the concrete case of systems of conformal blocks for a certain class of conformal vertex algebras