ﻻ يوجد ملخص باللغة العربية
New data for the $^mbox{nat}$V(p,x) reactions have been measured in the range 26-70 MeV, with production of the nuclides $^{47}$Sc, $^{43}$Sc, $^{44m}$Sc, $^{44g}$Sc, $^{46}$Sc, $^{48}$Sc, $^{42}$K, $^{43}$K, $^{48}$V, $^{48}$Cr, $^{49}$Cr, and $^{51}$Cr. The focus is on the production of $^{47}$Sc, a $beta^-$-emitter suitable for innovative radiotheranostic applications in nuclear medicine. The measured cross sections for this radionuclide and its contaminants are compared with the theoretical excitation functions calculated with the TALYS code. In view of novel radiopharmaceutical applications, it is essential to accurately describe these cross-sections for the evaluation of yields, purities, and dose releases. Hence, we optimize the level-density parameters of the microscopic models in the TALYS code to obtain the best possible descriptions of the new data. We consider different irradiation conditions to estimate the production yields from the cross sections determined in this work.
The production cross sections of $^{68,69}$Ge and $^{66,67}$Ga by alpha-induced reactions on $^{nat}$Zn have been measured using the stacked-foil activation method and off-line gamma-ray spectrometry from their threshold energies to 50.7 MeV. The der
The Bayesian neural network (BNN) method is used to construct a predictive model for fragment prediction of proton induced spallation reactions with the guidance of a simplified EPAX formula. Compared to the experimental data, it is found that the BN
$^{72}$As is a promising positron emitter for diagnostic imaging that can be employed locally using a $^{72}$Se generator. However, current reaction pathways to $^{72}$Se have insufficient nuclear data for efficient production using regional 100-200
Proton-activation reactions on natural and enriched palladium samples were investigated via the activation technique in the energy range of E_p=2.75 MeV to 9 MeV, close to the upper end of the respective Gamow window of the gamma process. We have det
Gamma-ray excitation functions have been measured for 30, 42, 54 and 66 MeV proton beams accelerated onto C + O (Mylar), Mg, Si, and Fe targets of astrophysical interest at the separate-sector cyclotron of iThemba LABS in Somerset West (Cape Town, So