ترغب بنشر مسار تعليمي؟ اضغط هنا

Spot What Matters: Learning Context Using Graph Convolutional Networks for Weakly-Supervised Action Detection

36   0   0.0 ( 0 )
 نشر من قبل Peter Van Der Putten
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The dominant paradigm in spatiotemporal action detection is to classify actions using spatiotemporal features learned by 2D or 3D Convolutional Networks. We argue that several actions are characterized by their context, such as relevant objects and actors present in the video. To this end, we introduce an architecture based on self-attention and Graph Convolutional Networks in order to model contextual cues, such as actor-actor and actor-object interactions, to improve human action detection in video. We are interested in achieving this in a weakly-supervised setting, i.e. using as less annotations as possible in terms of action bounding boxes. Our model aids explainability by visualizing the learned context as an attention map, even for actions and objects unseen during training. We evaluate how well our model highlights the relevant context by introducing a quantitative metric based on recall of objects retrieved by attention maps. Our model relies on a 3D convolutional RGB stream, and does not require expensive optical flow computation. We evaluate our models on the DALY dataset, which consists of human-object interaction actions. Experimental results show that our contextualized approach outperforms a baseline action detection approach by more than 2 points in Video-mAP. Code is available at url{https://github.com/micts/acgcn}


قيم البحث

اقرأ أيضاً

Supervised learning method requires a large volume of annotated datasets. Collecting such datasets is time-consuming and expensive. Until now, very few annotated COVID-19 imaging datasets are available. Although self-supervised learning enables us to bootstrap the training by exploiting unlabeled data, the generic self-supervised methods for natural images do not sufficiently incorporate the context. For medical images, a desirable method should be sensitive enough to detect deviation from normal-appearing tissue of each anatomical region; here, anatomy is the context. We introduce a novel approach with two levels of self-supervised representation learning objectives: one on the regional anatomical level and another on the patient-level. We use graph neural networks to incorporate the relationship between different anatomical regions. The structure of the graph is informed by anatomical correspondences between each patient and an anatomical atlas. In addition, the graph representation has the advantage of handling any arbitrarily sized image in full resolution. Experiments on large-scale Computer Tomography (CT) datasets of lung images show that our approach compares favorably to baseline methods that do not account for the context. We use the learnt embedding to quantify the clinical progression of COVID-19 and show that our method generalizes well to COVID-19 patients from different hospitals. Qualitative results suggest that our model can identify clinically relevant regions in the images.
200 - Bingbing Xu , Huawei Shen , Qi Cao 2020
Graph convolutional networks gain remarkable success in semi-supervised learning on graph structured data. The key to graph-based semisupervised learning is capturing the smoothness of labels or features over nodes exerted by graph structure. Previou s methods, spectral methods and spatial methods, devote to defining graph convolution as a weighted average over neighboring nodes, and then learn graph convolution kernels to leverage the smoothness to improve the performance of graph-based semi-supervised learning. One open challenge is how to determine appropriate neighborhood that reflects relevant information of smoothness manifested in graph structure. In this paper, we propose GraphHeat, leveraging heat kernel to enhance low-frequency filters and enforce smoothness in the signal variation on the graph. GraphHeat leverages the local structure of target node under heat diffusion to determine its neighboring nodes flexibly, without the constraint of order suffered by previous methods. GraphHeat achieves state-of-the-art results in the task of graph-based semi-supervised classification across three benchmark datasets: Cora, Citeseer and Pubmed.
Graph convolutional neural networks~(GCNs) have recently demonstrated promising results on graph-based semi-supervised classification, but little work has been done to explore their theoretical properties. Recently, several deep neural networks, e.g. , fully connected and convolutional neural networks, with infinite hidden units have been proved to be equivalent to Gaussian processes~(GPs). To exploit both the powerful representational capacity of GCNs and the great expressive power of GPs, we investigate similar properties of infinitely wide GCNs. More specifically, we propose a GP regression model via GCNs~(GPGC) for graph-based semi-supervised learning. In the process, we formulate the kernel matrix computation of GPGC in an iterative analytical form. Finally, we derive a conditional distribution for the labels of unobserved nodes based on the graph structure, labels for the observed nodes, and the feature matrix of all the nodes. We conduct extensive experiments to evaluate the semi-supervised classification performance of GPGC and demonstrate that it outperforms other state-of-the-art methods by a clear margin on all the datasets while being efficient.
111 - Ziyi Liu , Le Wang , Wei Tang 2021
Weakly-supervised Temporal Action Localization (WS-TAL) methods learn to localize temporal starts and ends of action instances in a video under only video-level supervision. Existing WS-TAL methods rely on deep features learned for action recognition . However, due to the mismatch between classification and localization, these features cannot distinguish the frequently co-occurring contextual background, i.e., the context, and the actual action instances. We term this challenge action-context confusion, and it will adversely affect the action localization accuracy. To address this challenge, we introduce a framework that learns two feature subspaces respectively for actions and their context. By explicitly accounting for action visual elements, the action instances can be localized more precisely without the distraction from the context. To facilitate the learning of these two feature subspaces with only video-level categorical labels, we leverage the predictions from both spatial and temporal streams for snippets grouping. In addition, an unsupervised learning task is introduced to make the proposed module focus on mining temporal information. The proposed approach outperforms state-of-the-art WS-TAL methods on three benchmarks, i.e., THUMOS14, ActivityNet v1.2 and v1.3 datasets.
100 - Attaullah Sahito , Eibe Frank , 2021
Neural networks have been successfully used as classification models yielding state-of-the-art results when trained on a large number of labeled samples. These models, however, are more difficult to train successfully for semi-supervised problems whe re small amounts of labeled instances are available along with a large number of unlabeled instances. This work explores a new training method for semi-supervised learning that is based on similarity function learning using a Siamese network to obtain a suitable embedding. The learned representations are discriminative in Euclidean space, and hence can be used for labeling unlabeled instances using a nearest-neighbor classifier. Confident predictions of unlabeled instances are used as true labels for retraining the Siamese network on the expanded training set. This process is applied iteratively. We perform an empirical study of this iterative self-training algorithm. For improving unlabeled predictions, local learning with global consistency [22] is also evaluated.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا