ﻻ يوجد ملخص باللغة العربية
Measuring longitudinally polarized vector boson scattering in, e.g., the ZZ channel is a promising way to investigate the unitarization scheme from the Higgs and possible new physics beyond the Standard Model. However, at the LHC, it demands the end of the HL-LHC lifetime luminosity, 3000/fb, and advanced data analysis technique to reach the discovery threshold due to its small production rates. Instead, there could be great potential for future colliders. In this paper, we perform a Monte Carlo study and examine the projected sensitivity of longitudinally polarized ZZ scattering at a TeV scale muon collider. We conduct studies at 14 TeV and 6 TeV muon colliders respectively and find that a 5 standard deviation discovery can be achieved at a 14 TeV muon collider, with 3000/fb of data collected. While a 6 TeV muon collider can already surpass HL-LHC, reaching 2 standard deviations with around 4000/fb of data. The effect from lepton isolation and detector granularity is also discussed, which may be more obvious at higher energy muon colliders, as the leptons from longitudinally polarized Z decays tend to be closer.
In modern technicolor models, there exist very narrow spin-zero and spin-one neutral technihadrons---$pi^0_T$, $rho^0_T$ and $omega_T$---with masses of a few 100 GeV. The large coupling of $pi^0_T$ to $mu^+mu^-$, the direct coupling of $rho^0_T$ and
This paper focuses on a measurement of deeply virtual Compton scattering (DVCS) performed at Jefferson Lab using a nearly-6-GeV polarized electron beam, two longitudinally polarized (via DNP) solid targets of protons (NH3) and deuterons (ND3) and the
The LHCb measurements of the $mu / e$ ratio in $B to K ell ell$ decays $(R_{K^{}})$ indicate a deficit with respect to the Standard Model prediction, supporting earlier hints of lepton universality violation observed in the $R_{K^{(*)}}$ ratio. Possi
We explore the sensitivity of directly testing the muon-Higgs coupling at a high-energy muon collider. This is strongly motivated if there exists new physics that is not aligned with the Standard Model Yukawa interactions which are responsible for th
We investigate the sensitivity of the projected TeV muon collider to the gauged $L^{}_{mu}$-$L^{}_{tau}$ model. Two processes are considered: $Z$-mediated two-body scatterings $mu^+ mu^- to ell^+ ell^-$ with $ell = mu$ or $tau$, and scattering with i