ﻻ يوجد ملخص باللغة العربية
In this document, I present a personal view on the heavy-fermion problem, within a phenomenological approach guided by experiments. This review presents a set of historical works which established the ground bases of the thematic during the last decades. An exhaustive and systematic approach is privileged. After a general presentation in Chapter 2, the properties of heavy-fermion paramagnets, antiferromagnets, and ferromagnets are considered in Chapters 3, 4, and 5, respectively. Chapters 6 and 7 are dedicated to two specific compounds, URu$_2$Si$_2$ for which a hidden-order phase constitutes a more-than-thirty-years-old unsolved mystery, and UTe$_2$, where multiple superconducting phases have been discovered in the last two years. Experiments performed using a panel of techniques ranging from microscopic (neutron scattering, NMR, etc.) to thermodynamic (specific heat, magnetization, etc.) and transport (electrical resistivity, etc.) probes, under extreme conditions of low temperatures, intense magnetic fields and high pressures, are reviewed. They show that magnetism plays a central role in the quantum critical properties of heavy-fermion systems. An emphasis is given to the intersite magnetic fluctuations, presented as the driving force for a heavy Fermi liquid, precursor of quantum magnetic criticality ending in magnetically-ordered phases. They are also suspected to drive an unconventional mechanism for superconductivity, which develops in the vicinity of quantum magnetic phase transitions induced under pressure or magnetic field. The appearance of magnetic fluctuations and ultimately magnetic order in heavy-fermion compounds occurs in a nearly-integer-valence regime, in which $f$ electrons have a dual itinerant-localized character. Fermi-surface and valence studies, which give complementary information about this duality, are also considered.
We use high-resolution angle-resolved photoemission spectroscopy to investigate the electronic structure of the antiferromagnetic heavy fermion compound CePt2In7, which is a member of the CeIn3-derived heavy fermion material family. Weak hybridizatio
The interplay of magnetism and unconventional superconductivity (d singlet wave or p triplet wave) in strongly correlated electronic system (SCES) is discussed with recent examples found in heavy fermion compounds. A short presentation is given on th
This paper is devoted to the investigation of electron sound -- oscillations of the electron distribution function coupled with elastic deformation and propagating with the Fermi velocity. The amplitude-phase relations characterizing the behavior of
We review magnetic, superconducting and non-Fermi-liquid properties of the structurally layered heavy-fermion compounds Ce$_n$M$_m$In$_{3n+2m}$ (M=Co, Rh, Ir). These properties suggest d-wave superconductivity and proximity to an antiferromagetic quantum-critical point.
To clarify the nature of correlations in Hund metals and its relationship with Mott physics we analyze the electronic correlations in multiorbital systems as a function of intraorbital interaction U, Hunds coupling JH and electronic filling n. We sho