ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetism in heavy-f-electron metals

85   0   0.0 ( 0 )
 نشر من قبل William Knafo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف William Knafo




اسأل ChatGPT حول البحث

In this document, I present a personal view on the heavy-fermion problem, within a phenomenological approach guided by experiments. This review presents a set of historical works which established the ground bases of the thematic during the last decades. An exhaustive and systematic approach is privileged. After a general presentation in Chapter 2, the properties of heavy-fermion paramagnets, antiferromagnets, and ferromagnets are considered in Chapters 3, 4, and 5, respectively. Chapters 6 and 7 are dedicated to two specific compounds, URu$_2$Si$_2$ for which a hidden-order phase constitutes a more-than-thirty-years-old unsolved mystery, and UTe$_2$, where multiple superconducting phases have been discovered in the last two years. Experiments performed using a panel of techniques ranging from microscopic (neutron scattering, NMR, etc.) to thermodynamic (specific heat, magnetization, etc.) and transport (electrical resistivity, etc.) probes, under extreme conditions of low temperatures, intense magnetic fields and high pressures, are reviewed. They show that magnetism plays a central role in the quantum critical properties of heavy-fermion systems. An emphasis is given to the intersite magnetic fluctuations, presented as the driving force for a heavy Fermi liquid, precursor of quantum magnetic criticality ending in magnetically-ordered phases. They are also suspected to drive an unconventional mechanism for superconductivity, which develops in the vicinity of quantum magnetic phase transitions induced under pressure or magnetic field. The appearance of magnetic fluctuations and ultimately magnetic order in heavy-fermion compounds occurs in a nearly-integer-valence regime, in which $f$ electrons have a dual itinerant-localized character. Fermi-surface and valence studies, which give complementary information about this duality, are also considered.



قيم البحث

اقرأ أيضاً

We use high-resolution angle-resolved photoemission spectroscopy to investigate the electronic structure of the antiferromagnetic heavy fermion compound CePt2In7, which is a member of the CeIn3-derived heavy fermion material family. Weak hybridizatio n among 4f electron states and conduction bands was identified in CePt2In7 at low temperature much weaker than that in the other heavy fermion compounds like CeIrIn5 and CeRhIn5. The Ce 4f spectrum shows fine structures near the Fermi energy, reflecting the crystal electric field splitting of the 4f^1_5/2 and 4f^1_7/2 states. Also, we find that the Fermi surface has a strongly three-dimensional topology, in agreement with density-functional theory calculations.
The interplay of magnetism and unconventional superconductivity (d singlet wave or p triplet wave) in strongly correlated electronic system (SCES) is discussed with recent examples found in heavy fermion compounds. A short presentation is given on th e formation of the heavy quasiparticle with the two sources of a local and intersite enhancement for the effective mass. Two cases of the coexistence or repulsion of antiferromagnetism and superconductivity are given with CeIn3 and CeCoIn5. A spectacular example is the emergence of superconductivity in relatively strong itinerant ferromagnets UGe2 and URhGe. The impact of heavy fermion matter among other SCES as organic conductor or high Tc oxide is briefly pointed out.
This paper is devoted to the investigation of electron sound -- oscillations of the electron distribution function coupled with elastic deformation and propagating with the Fermi velocity. The amplitude-phase relations characterizing the behavior of the electron sound in Ga single crystals are determined experimentally. A model problem of excitation of electron sound in a compensated metal with equivalent bands is solved for a finite sample with diffusive scattering of electrons at the interfaces. It was found that the displacement amplitude of the receiving interface is two orders of magnitude larger than the elastic amplitude of the wave due to electron pressure. It was established that the changes occurring in the amplitude and phase of the electron sound waves at a superconducting transition do not depend on the path traversed by the wave, i.e. they refer only to the behavior of the transformation coefficient.
We review magnetic, superconducting and non-Fermi-liquid properties of the structurally layered heavy-fermion compounds Ce$_n$M$_m$In$_{3n+2m}$ (M=Co, Rh, Ir). These properties suggest d-wave superconductivity and proximity to an antiferromagetic quantum-critical point.
To clarify the nature of correlations in Hund metals and its relationship with Mott physics we analyze the electronic correlations in multiorbital systems as a function of intraorbital interaction U, Hunds coupling JH and electronic filling n. We sho w that the main process behind the enhancement of correlations in Hund metals is the suppression of the double-occupancy of a given orbital, as it also happens in the Mott-insulator at half-filling. However, contrary to what happens in Mott correlated states the reduction of the quasiparticle weight Z with JH can happen on spite of increasing charge fluctuations. Therefore, in Hund metals the quasiparticle weight and the mass enhancement are not good measurements of the charge localization. Using simple energetic arguments we explain why the spin polarization induced by Hunds coupling produces orbital decoupling. We also discuss how the behavior at moderate interactions, with correlations controlled by the atomic spin polarization, changes at large $U$ and $J_H$ due to the proximity to a Mott insulating state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا